Publications by authors named "Varun Krishnamurthy"

Aortic valve disease is commonly found in the elderly population. It is characterized by dysregulated extracellular matrix remodeling followed by extensive microcalcification of the aortic valve and activation of valve interstitial cells. The mechanism behind these events are largely unknown.

View Article and Find Full Text PDF

Tissue oxygenation often plays a significant role in disease and is an essential design consideration for tissue engineering. Here, oxygen diffusion profiles of porcine aortic and mitral valve leaflets were determined using an oxygen diffusion chamber in conjunction with computational models. Results from these studies revealed the differences between aortic and mitral valve leaflet diffusion profiles and suggested that diffusion alone was insufficient for normal oxygen delivery in mitral valves.

View Article and Find Full Text PDF

Aortic valve disease (AVD) is one of the leading causes of cardiovascular mortality. Abnormal expression of hyaluronan (HA) and its synthesizing/degrading enzymes have been observed during latent AVD however, the mechanism of impaired HA homeostasis prior to and after the onset of AVD remains unexplored. Transforming growth factor beta (TGFβ) pathway defects and biomechanical dysfunction are hallmarks of AVD, however their association with altered HA regulation is understudied.

View Article and Find Full Text PDF

Motivation: Uridine diphosphate glucunosyltransferases (UGTs) metabolize 15% of FDA approved drugs. Lead optimization efforts benefit from knowing how candidate drugs are metabolized by UGTs. This paper describes a computational method for predicting sites of UGT-mediated metabolism on drug-like molecules.

View Article and Find Full Text PDF

Aortic valve disease (AVD) and aortopathy are associated with substantial morbidity and mortality, representing a significant cardiovascular healthcare burden worldwide. These mechanobiological structures are morphogenetically related and function in unison from embryonic development through mature adult tissue homeostasis, serving both coordinated and distinct roles. In addition to sharing common developmental origins, diseases of the aortic valve and proximal thoracic aorta often present together clinically.

View Article and Find Full Text PDF

Aortopathy is characterized by vascular smooth muscle cell (VSMC) abnormalities and elastic fiber fragmentation. Elastin insufficient (Eln (+/-)) mice demonstrate latent aortopathy similar to human disease. We hypothesized that aortopathy manifests primarily in the aorto-pulmonary septal (APS) side of the thoracic aorta due to asymmetric cardiac neural crest (CNC) distribution.

View Article and Find Full Text PDF

Aortic valve disease (AVD) occurs in 2.5% of the general population and often requires surgical intervention. Aortic valve malformation (AVM) underlies the majority of cases, suggesting a developmental etiology.

View Article and Find Full Text PDF

Site-specific biomechanical properties of the aortic valve play an important role in native valve function, and alterations in these properties may reflect mechanisms of degeneration and disease. Small animals such as targeted mutagenesis mice provide a powerful approach to model human valve disease pathogenesis; however, physical mechanical testing in small animals is limited by valve tissue size. Aortic valves are comprised of highly organized extracellular matrix compartmentalized in cusp and annulus regions, which have different functions.

View Article and Find Full Text PDF

Rationale: Elastin is a ubiquitous extracellular matrix protein that is highly organized in heart valves and arteries. Because elastic fiber abnormalities are a central feature of degenerative valve disease, we hypothesized that elastin-insufficient mice would manifest viable heart valve disease.

Objective: To analyze valve structure and function in elastin-insufficient mice (Eln(+/-)) at neonatal, juvenile, adult, and aged adult stages.

View Article and Find Full Text PDF