Publications by authors named "Varun Buch"

. Ultrasound is extensively utilized as a convenient and cost-effective method in emergency situations. Unfortunately, the limited availability of skilled clinicians in emergency hinders the wider adoption of point-of-care ultrasound.

View Article and Find Full Text PDF

Purpose: To develop and validate a deep learning-based system that predicts the largest ascending and descending aortic diameters at chest CT through automatic thoracic aortic segmentation and identifies aneurysms in each segment.

Materials And Methods: In this retrospective study conducted from July 2019 to February 2021, a U-Net and a postprocessing algorithm for thoracic aortic segmentation and measurement were developed by using a dataset (dataset A) that included 315 CT studies split into training, hyperparameter-tuning, and testing sets. The U-Net and postprocessing algorithm were associated with a Digital Imaging and Communications in Medicine series filter and visualization interface and were further validated by using a dataset (dataset B) that included 1400 routine CT studies.

View Article and Find Full Text PDF

Interest in artificial intelligence (AI) has grown exponentially in recent years, attracting sensational headlines and speculation. While there is considerable potential for AI to augment clinical practice, there remain numerous practical implications that must be considered when exploring AI solutions. These range from ethical concerns about algorithmic bias to legislative concerns in an uncertain regulatory environment.

View Article and Find Full Text PDF

Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while maintaining data anonymity, thus removing many barriers to data sharing. Here we used data from 20 institutes across the globe to train a FL model, called EXAM (electronic medical record (EMR) chest X-ray AI model), that predicts the future oxygen requirements of symptomatic patients with COVID-19 using inputs of vital signs, laboratory data and chest X-rays. EXAM achieved an average area under the curve (AUC) >0.

View Article and Find Full Text PDF

Purpose: As of August 30th, there were in total 25.1 million confirmed cases and 845 thousand deaths caused by coronavirus disease of 2019 (COVID-19) worldwide. With overwhelming demands on medical resources, patient stratification based on their risks is essential.

View Article and Find Full Text PDF

In recent years, deep learning-based image analysis methods have been widely applied in computer-aided detection, diagnosis and prognosis, and has shown its value during the public health crisis of the novel coronavirus disease 2019 (COVID-19) pandemic. Chest radiograph (CXR) has been playing a crucial role in COVID-19 patient triaging, diagnosing and monitoring, particularly in the United States. Considering the mixed and unspecific signals in CXR, an image retrieval model of CXR that provides both similar images and associated clinical information can be more clinically meaningful than a direct image diagnostic model.

View Article and Find Full Text PDF

To perform a multicenter assessment of the CT Pneumonia Analysis prototype for predicting disease severity and patient outcome in COVID-19 pneumonia both without and with integration of clinical information. Our IRB-approved observational study included consecutive 241 adult patients (> 18 years; 105 females; 136 males) with RT-PCR-positive COVID-19 pneumonia who underwent non-contrast chest CT at one of the two tertiary care hospitals (site A: Massachusetts General Hospital, USA; site B: Firoozgar Hospital Iran). We recorded patient age, gender, comorbid conditions, laboratory values, intensive care unit (ICU) admission, mechanical ventilation, and final outcome (recovery or death).

View Article and Find Full Text PDF

'Federated Learning' (FL) is a method to train Artificial Intelligence (AI) models with data from multiple sources while maintaining anonymity of the data thus removing many barriers to data sharing. During the SARS-COV-2 pandemic, 20 institutes collaborated on a healthcare FL study to predict future oxygen requirements of infected patients using inputs of vital signs, laboratory data, and chest x-rays, constituting the "EXAM" (EMR CXR AI Model) model. EXAM achieved an average Area Under the Curve (AUC) of over 0.

View Article and Find Full Text PDF

To compare the performance of artificial intelligence (AI) and Radiographic Assessment of Lung Edema (RALE) scores from frontal chest radiographs (CXRs) for predicting patient outcomes and the need for mechanical ventilation in COVID-19 pneumonia. Our IRB-approved study included 1367 serial CXRs from 405 adult patients (mean age 65 ± 16 years) from two sites in the US (Site A) and South Korea (Site B). We recorded information pertaining to patient demographics (age, gender), smoking history, comorbid conditions (such as cancer, cardiovascular and other diseases), vital signs (temperature, oxygen saturation), and available laboratory data (such as WBC count and CRP).

View Article and Find Full Text PDF

Early and accurate diagnosis of Coronavirus disease (COVID-19) is essential for patient isolation and contact tracing so that the spread of infection can be limited. Computed tomography (CT) can provide important information in COVID-19, especially for patients with moderate to severe disease as well as those with worsening cardiopulmonary status. As an automatic tool, deep learning methods can be utilized to perform semantic segmentation of affected lung regions, which is important to establish disease severity and prognosis prediction.

View Article and Find Full Text PDF

We describe a case of a 48-year-old woman who presented with a 15-year history of recurrent episodes of hypoglycemia and hyponatremia leading to altered behavior and generalized seizures. She underwent full clinical assessment, endocrine tests, and a pituitary magnetic resonance scan that showed pananterior hypopituitarism secondary to postpartum pituitary necrosis (Sheehan's syndrome). She was commenced on appropriate hormone replacement therapy, which led to significant improvement in lethargy, anorexia, muscle weakness, and episodes of hypoglycemia.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionittsa34n5emiseovludlkcma1j8cjgd6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once