The continuous evolution of SARS-CoV-2 has led to the emergence of several variants of concern (VOCs) that significantly affect global health. This study aims to investigate how these VOCs affect host cells at proteome level to better understand the mechanisms of disease. To achieve this, we first analyzed the (phospho)proteome changes of host cells infected with Alpha, Beta, Delta, and Omicron BA.
View Article and Find Full Text PDFMyocardin-related transcription factor A (MRTF-A) is a coactivator of serum response factor (SRF), which regulates the expression of genes involved in cell proliferation, migration, and differentiation and has been implicated in hepatocellular carcinoma (HCC) progression. We recently established inhibition of the transcriptional activity of MRTF-A by NS8593 as a novel therapeutic approach for HCC therapy. NS8593 is a negative gating modulator of the transient receptor potential cation channel TRPM7.
View Article and Find Full Text PDFMyocardin-related transcription factors (MRTFs) are coactivators of serum response factor (SRF), and thereby regulate cytoskeletal gene expression in response to actin dynamics. MRTFs have also been implicated in transcription of heat shock protein (HSP)-encoding genes in fly ovaries, but the mechanisms remain unclear. Here, we demonstrate that, in mammalian cells, MRTFs are dispensable for gene induction of HSP-encoding genes.
View Article and Find Full Text PDFNuclear actin has been demonstrated to be essential for optimal transcription, but the molecular mechanisms and direct binding partner for actin in the RNA polymerase complex have remained unknown. By using purified proteins in a variety of biochemical assays, we demonstrate a direct and specific interaction between monomeric actin and Cdk9, the kinase subunit of the positive transcription elongation factor b required for RNA polymerase II pause-release. This interaction efficiently prevents actin polymerization, is not dependent on kinase activity of Cdk9, and is not involved with releasing positive transcription elongation factor b from its inhibitor 7SK snRNP complex.
View Article and Find Full Text PDFChromatin is composed of DNA and its associated proteins, and has an essential role in all cellular processes, including those taking place during Drosophila oogenesis. In order to understand the molecular basis of chromatin-based processes, such as transcription, it is essential to be able to study how and when different proteins, such as transcription factors, histones and RNA polymerases, interact with chromatin. One of the most popular methods to study this is chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq).
View Article and Find Full Text PDFActin has important functions in both cytoplasm and nucleus of the cell, with active nuclear transport mechanisms maintaining the cellular actin balance. Nuclear actin levels are subject to regulation during many cellular processes from cell differentiation to cancer. Here we show that nuclear actin levels increase upon differentiation of PC6.
View Article and Find Full Text PDFUnlabelled: Vitellogenin (Vg) is a conserved protein used by nearly all oviparous animals to produce eggs. It is also pleiotropic and performs functions in oxidative stress resistance, immunity, and, in honey bees, behavioral development of the worker caste. It has remained enigmatic how Vg affects multiple traits.
View Article and Find Full Text PDFMyocardin-related transcription factor A (MRTF-A), a coactivator of serum response factor (SRF), regulates the expression of many cytoskeletal genes in response to cytoplasmic and nuclear actin dynamics. Here we describe a novel mechanism to regulate MRTF-A activity within the nucleus by showing that lamina-associated polypeptide 2α (Lap2α), the nucleoplasmic isoform of Lap2, is a direct binding partner of MRTF-A, and required for the efficient expression of MRTF-A/SRF target genes. Mechanistically, Lap2α is not required for MRTF-A nuclear localization, unlike most other MRTF-A regulators, but is required for efficient recruitment of MRTF-A to its target genes.
View Article and Find Full Text PDFTreatment options for COVID-19, caused by SARS-CoV-2, remain limited. Understanding viral pathogenesis at the molecular level is critical to develop effective therapy. Some recent studies have explored SARS-CoV-2-host interactomes and provided great resources for understanding viral replication.
View Article and Find Full Text PDFDendritic cells (DC), the classic antigen-presenting cells of the immune system, switch from an adhesive, phagocytic phenotype in tissues, to a mature, nonadhesive phenotype that enables migration to lymph nodes to activate T cells and initiate antitumor responses. Monocyte-derived DCs are used in cancer immunotherapy, but their clinical efficacy is limited. Here, we show that cultured bone marrow-derived DCs (BM-DC) expressing dysfunctional β2-integrin adhesion receptors displayed enhanced tumor rejection capabilities in B16.
View Article and Find Full Text PDFInt J Environ Res Public Health
June 2021
The COVID-19 crisis has disrupted when, where, and how employees work. Drawing on a sample of 5452 Finnish employees, this study explores the factors associated with employees' abrupt adjustment to remote work. Specifically, this study examines factors (i.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is composed of a controlled ratio of sheets and tubules, which are maintained by several proteins with multiple functions. Reticulons (RTNs), especially RTN4, and DP1/Yop1p family members are known to induce ER membrane curvature. RTN4B is the main RTN4 isoform expressed in nonneuronal cells.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
March 2021
Recent years have provided considerable insights into the dynamic nature of the cell nucleus, which is constantly reorganizing its genome, controlling its size and shape, as well as spatiotemporally orchestrating chromatin remodeling and transcription. Remarkably, it has become clear that the ancient and highly conserved cytoskeletal protein actin plays a crucial part in these processes. However, the underlying mechanisms, regulations, and properties of actin functions inside the nucleus are still not well understood.
View Article and Find Full Text PDFActin has essential functions both in the cytoplasm and in the nucleus, where it has been linked to key nuclear processes, from transcription to DNA damage response. The multifunctional nature of actin suggests that the cell must contain mechanisms to accurately control the cellular actin balance. Indeed, recent results have demonstrated that nuclear actin levels fluctuate to regulate the transcriptional activity of the cell and that controlled nuclear actin polymerization is required for transcription activation, cell cycle progression, and DNA repair.
View Article and Find Full Text PDFTechniques of protein regulation, such as conditional gene expression, RNA interference, knock-in and knock-out, lack sufficient spatiotemporal accuracy, while optogenetic tools suffer from non-physiological response due to overexpression artifacts. Here we present a near-infrared light-activatable optogenetic system, which combines the specificity and orthogonality of intrabodies with the spatiotemporal precision of optogenetics. We engineer optically-controlled intrabodies to regulate genomically expressed protein targets and validate the possibility to further multiplex protein regulation via dual-wavelength optogenetic control.
View Article and Find Full Text PDFAlthough best known from its functions in the cytoplasm, actin also localizes to the cell nucleus, where it has been linked to many essential functions from regulation of gene expression to maintenance of genomic integrity. While majority of cytoplasmic functions of actin depend on controlled actin polymerization, in the nucleus both actin monomers and filaments have their own specific roles. Actin monomers are core components of several chromatin remodeling and modifying complexes and can also regulate the activity of specific transcription factors, while actin filaments have been linked to DNA damage response and cell cycle progression.
View Article and Find Full Text PDFThe emerging role of cytoskeletal proteins in the cell nucleus has become a new frontier in cell biology. Actin and actin-binding proteins regulate chromatin and gene expression, but importantly they are beginning to be essential players in genome organization. These actin-based functions contribute to genome stability and integrity while affecting DNA replication and global transcription patterns.
View Article and Find Full Text PDFUnlabelled: Myocardin-related transcription factor A (MRTF-A) and serum response factor (SRF) form an essential transcriptional complex that regulates the expression of many cytoskeletal genes in response to dynamic changes in the actin cytoskeleton. The nucleoskeleton, a “dynamic network of networks,” consists of numerous proteins that contribute to nuclear shape and to its various functions, including gene expression. In this review, we will discuss recent work that has identified many nucleoskeletal proteins, such as nuclear lamina and lamina-associated proteins, nuclear actin, and the linker of the cytoskeleton and nucleoskeleton complex as important regulators of MRTF-A/SRF transcriptional activity, especially in the context of mechanical control of transcription.
View Article and Find Full Text PDFAppl Neuropsychol Adult
October 2021
Assessment of cognition is an important part of concussion management. The common paradigm of baseline and postinjury evaluations is recommended but due to the often lacking baseline data, reliable normative values are needed. The Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT®) battery is a widely used method of cognitive assessment offering several language options.
View Article and Find Full Text PDFIn addition to its essential functions within the cytoskeleton, actin also localizes to the cell nucleus, where it is linked to many important nuclear processes from gene expression to maintenance of genomic integrity. However, the molecular mechanisms by which actin operates in the nucleus remain poorly understood. Here, we have used two complementary mass spectrometry (MS) techniques, AP-MS and BioID, to identify binding partners for nuclear actin.
View Article and Find Full Text PDFActin has been linked to processes spanning the whole gene expression cascade, from regulating specific transcription factors, such as myocardin-related transcription factor, to chromatin remodeling and RNA polymerase function. However, whether actin controls the transcription of only specific genes or has a global role in gene expression has remained elusive. Our genome-wide analysis reveals, for the first time, that actin interacts with essentially all transcribed genes in Drosophila ovaries.
View Article and Find Full Text PDFPrevious research has reported lower cognitive test scores on baseline testing in athletes reporting multiple previous concussions or a history of learning disability (LD). Age also has an important influence on cognitive performance. While these factors have been considered individually in previous studies, the present study is the first to explore the interaction of age, self-reported LD, and history of concussion on baseline Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT®) in a nationwide study of adolescent athletes.
View Article and Find Full Text PDFAccurate control of macromolecule transport between nucleus and cytoplasm underlines several essential biological processes, including gene expression. According to the canonical model, nuclear import of soluble proteins is based on nuclear localization signals and transport factors. We challenge this view by showing that nuclear localization of the actin-dependent motor protein Myosin-1C (Myo1C) resembles the diffusion-retention mechanism utilized by inner nuclear membrane proteins.
View Article and Find Full Text PDFAfter mitosis, the nucleus must be rebuilt and chromatin decondensed to permit interphase genomic functions, but decondensation mechanisms are poorly understood. Now, the traditional cytoskeletal protein actin is shown to form transient nuclear filaments that are required for chromatin decondensation and nuclear expansion at mitotic exit.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
October 2017
Current models imply that the evolutionarily conserved, actin-binding Ezrin-Radixin-Moesin (ERM) proteins perform their activities at the plasma membrane by anchoring membrane proteins to the cortical actin network. Here we show that beside its cytoplasmic functions, the single ERM protein of Drosophila, Moesin, has a novel role in the nucleus. The activation of transcription by heat shock or hormonal treatment increases the amount of nuclear Moesin, indicating biological function for the protein in the nucleus.
View Article and Find Full Text PDF