Transporters belonging to the esistance-odulation-ivision (RND) superfamily of proteins are invariably present in the genomes of Gram-negative bacteria and are largely responsible for the intrinsic antibiotic resistance of these organisms. The numbers of genes encoding RND transporters per genome vary from 1 to 16 and correlate with the environmental versatilities of bacterial species. Pseudomonas aeruginosa strain PAO1, a ubiquitous nosocomial pathogen, possesses 12 RND pumps, which are implicated in the development of clinical multidrug resistance and known to contribute to virulence, quorum sensing, and many other physiological functions.
View Article and Find Full Text PDFIn Gram-negative bacteria, efflux pumps are able to prevent effective cellular concentrations from being achieved for a number of antibiotics. Small molecule adjuvants that act as efflux pump inhibitors (EPIs) have the potential to reinvigorate existing antibiotics that are currently ineffective due to efflux mechanisms. Through a combination of rigorous experimental screening and in silico virtual screening, we recently identified novel classes of EPIs that interact with the membrane fusion protein AcrA, a critical component of the AcrAB-TolC efflux pump in Escherichia coli.
View Article and Find Full Text PDF