Publications by authors named "Varravaddheay Ong Meang"

Exosomes are spherical extracellular nanovesicles with an endosomal origin and unilamellar lipid-bilayer structure with sizes ranging from 30 to 100 nm. They contain a large range of proteins, lipids, and nucleic acid species, depending on the state and origin of the extracellular vesicle (EV)-secreting cell. EVs' function is to encapsulate part of the EV-producing cell content, to transport it through biological fluids to a targeted recipient, and to deliver their cargos specifically within the aimed recipient cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how polyunsaturated fatty acids (PUFAs) affect extracellular vesicles (EVs) in cells related to cardiac inflammation, specifically focusing on mouse macrophages and rat heart mesenchymal stem cells.
  • It was found that these EVs not only transport a variety of eicosanoids but also contain essential enzymes that enable them to produce inflammation-related compounds independently of the parent cells.
  • The results indicate that EVs play a significant role in the paracrine signaling process in cardiac tissue, especially noting a unique response from macrophages when exposed to PUFAs, suggesting their potential as monitoring entities within the body.
View Article and Find Full Text PDF

Capillary electrophoresis coupled to LED-induced fluorescence detection is a robust and sensitive technique used for amino acids (AA) analysis in biological media, after labeling with 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde (CBQCA). We wanted to quantitate in plasma tryptophan (Trp), tyrosine (Tyr), valine (Val), and isoleucine (Ile). Among the different labeled AA-CBQCA, Trp has the lowest fluorescence yield, which makes its detection and quantification very difficult in biological samples such as plasma.

View Article and Find Full Text PDF

Recent works reported the relevance of cellular exosomes in the evolution of different pathologies. However, most of these studies focused on the ability of exosomes to convey mi-RNA from cell to cell. The level of knowledge concerning the transport of lipid mediators by these nanovesicles is more than fragmented.

View Article and Find Full Text PDF

Tryptophane (Trp) labelled by 3-(4-carboxybenzoyl)-2-quinolinecarboxaldehyde (CBQCA) is very difficult to identify using CE and fluorescence detection (480 nm). Why in this article some mass spectrometry experiments show that Trp is really labelled by CBQCA as Leucine (Leu)? If the maximum of UV absorption (λ ) is the same between Leu-CBQCA and Trp-CBQCA, the molar extinction coefficient is around 2 fold higher for Trp-CBQCA. The fluorescence of the Leu-CBQCA derivative is 50 times more important than for Trp-CBQCA.

View Article and Find Full Text PDF

Lipids are naturally occurring organic compounds that can be classified into a number of types based on their solubility in nonpolar organic solvents, and are generally insoluble in water. The great structural variety of these various types of lipids has led them to be components of many different biological substances such as oils, waxes, cellular membranes, tissues and biological fluids. The use of capillary electrophoresis (CE) for the study of lipids during the past 30 years has been relatively rare when compared to its use for other classes of biomolecules, primarily due to their insolubility in water.

View Article and Find Full Text PDF

Dendrimers are nanosized, nonlinear, hyperbranched polymers whose overall 3D shape is key for their biological activity. Poly(PhosphorHydrazone) (PPH) dendrimers capped with aza-bisphosphonate (ABP) end groups are known to have anti-inflammatory properties enabling the control of inflammatory diseases in different mouse models. Here we screen the anti-inflammatory activity of a series of PPH dendrimers bearing between 2 and 16 ABP end groups in a mouse model of arthritis and confront the biological results with atomistic simulations of the dendrimers.

View Article and Find Full Text PDF

One of the major difficulties that arises when selecting aptamers containing a G-quadruplex is the correct amplification of the ssDNA sequence. Can aptamers containing a G-quadruplex be selected from a degenerate library using non-equilibrium capillary electrophoresis (CE) of equilibrium mixtures (NECEEM) along with high-throughput Illumina sequencing? In this article, we present some mismatches of the G-quadruplex T29 aptamer specific to thrombin, which was PCR amplified and sequenced by Illumina sequencing. Then, we show the proportionality between the number of sequenced molecules of T29 added to the library and the number of sequences obtained in Illumina sequencing, and we find that T29 sequences from this aptamer can be detected in a random library of ssDNA after the sample is fractionated by NECEEM, amplified by PCR, and sequenced.

View Article and Find Full Text PDF

In the tenth edition of this article focused on recent advances in amino acid analysis using capillary electrophoresis, we describe the most important research articles published on this topic during the period from June 2015 to May 2017. This article follows the format of the previous articles published in Electrophoresis. The new developments in amino acid analysis with CE mainly describe improvements in CE associated with mass spectrometry.

View Article and Find Full Text PDF

Tris-Acetate buffer is currently used in the selection and the characterization of ssDNA by capillary electrophoresis (CE). By applying high voltage, the migration of ionic species into the capillary generates a current that induces water electrolysis. This phenomenon is followed by the modification of the pH and the production of Tris derivatives.

View Article and Find Full Text PDF

Native laser-induced fluorescence using UV lasers associated to CE offers now a large related literature, for now 30 years. The main works have been performed using very expensive Ar-ion lasers emitting at 257 and 275 nm. They are not affordable for routine analyses, but have numerous applications such as protein, catecholamine, and indolamine analysis.

View Article and Find Full Text PDF

We describe the most important research articles published on amino acid analysis using CE during the period from June 2013 to May 2015, and follows the format of the previous articles published in electrophoresis the new developments in amino acid analysis with CE are mainly describing improvements in detection means and injection methods. Enantiomeric separation developments are still important. Focusing the applications, we describe the neurochemical and clinical works, but also the metabolomic studies for which the publication number increase greatly.

View Article and Find Full Text PDF

This article describes the most important research published on amino acid (AA) analysis using CE during the period from June 2011 to May 2013, and follows the format of the previous articles of Smith (Electrophoresis 1999, 20, 3078-3083), Prata et al. (Electrophoresis 2001, 22, 4129-4138), and Poinsot et al. (Electrophoresis 2003, 24, 4047-4062; Electrophoresis 2006, 27, 176-194; Electrophoresis 2008, 29, 207-223; Electrophoresis 2010, 31, 105-121; Electrophoresis 2012, 33, 14-35).

View Article and Find Full Text PDF

A CE technique coupled to LIF detection (488 nm) or LED-induced fluorescence detection (470 nm) has been evaluated to acquire a cheap way to analyze amino acids (AAs) whilst maintaining the best sensitivity. To quantitate AAs in milk of Cucurbitaceae of Sub-Saharan Africa, they were labeled with FITC. We used an optimized separation buffer composed of 30 mM boric acid buffer adjusted to pH 9.

View Article and Find Full Text PDF