Individuals with alcohol use disorder (AUD) struggle with inhibitory control, decision making, and emotional processing. These cognitive symptoms reduce treatment adherence, worsen clinical outcomes, and promote relapse. Neuroimmune activation is a key factor in the pathophysiology of AUD, and targeting this modulatory system is less likely to produce unwanted side effects compared to directly targeting neurotransmitter dysfunction.
View Article and Find Full Text PDFAlcohol use disorder (AUD) produces cognitive deficits, indicating a shift in prefrontal cortex (PFC) function. PFC glutamate neurotransmission is mostly mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic receptors (AMPARs); however preclinical studies have mostly focused on other receptor subtypes. Here we examined the impact of early withdrawal from chronic ethanol on AMPAR function in the mouse medial PFC (mPFC).
View Article and Find Full Text PDFHyperkateifia and stress-induced alcohol cravings drive relapse in individuals with alcohol use disorder (AUD). The brain stress signal norepinephrine (also known as noradrenaline) tightly controls cognitive and affective behavior and was thought to be broadly dysregulated with AUD. The locus coeruleus (LC) is a major source of forebrain norepinephrine, and it was recently discovered that the LC sends distinct projections to addiction-associated regions suggesting that alcohol-induced noradrenergic changes may be more brain region-specific than originally thought.
View Article and Find Full Text PDFNeuroimmune pathways regulate brain function to influence complex behavior and play a role in several neuropsychiatric diseases, including alcohol use disorder (AUD). In particular, the interleukin-1 (IL-1) system has emerged as a key regulator of the brain's response to ethanol (alcohol). Here we investigated the mechanisms underlying ethanol-induced neuroadaptation of IL-1β signaling at GABAergic synapses in the prelimbic region of the medial prefrontal cortex (mPFC), an area responsible for integrating contextual information to mediate conflicting motivational drives.
View Article and Find Full Text PDFFront Synaptic Neurosci
January 2023
Background And Purpose: A major problem managing alcohol use disorder is the high vulnerability to relapse, even after long periods of abstinence. Chronic alcohol use dysregulates stress responsivity, rendering this system hyporesponsive and making individuals vulnerable to relapse. Orexin (hypocretin) plays a role in diverse physiological processes, including stress.
View Article and Find Full Text PDFAlcohol use disorder (AUD) is a chronically relapsing disease characterized by loss of control in seeking and consuming alcohol (ethanol) driven by the recruitment of brain stress systems. However, AUD differs among the sexes: men are more likely to develop AUD, but women progress from casual to binge drinking and heavy alcohol use more quickly. The central amygdala (CeA) is a hub of stress and anxiety, with corticotropin-releasing factor (CRF)-CRF receptor and Gamma-Aminobutyric Acid (GABA)-ergic signaling dysregulation occurring in alcohol-dependent male rodents.
View Article and Find Full Text PDFBackground: Alcohol use disorder (AUD) is a leading preventable cause of death. The central amygdala (CeA) is a hub for stress and AUD, while dysfunction of the noradrenaline stress system is implicated in AUD relapse.
Methods: Here, we investigated whether alcohol (ethanol) dependence and protracted withdrawal alter noradrenergic regulation of the amygdala in rodents and humans.
A major barrier to remission from an alcohol use disorder (AUD) is the continued risk of relapse during abstinence. Assessing the neuroadaptations after chronic alcohol and repeated abstinence is important to identify mechanisms that may contribute to relapse. In this study, we used a rhesus macaque model of long-term alcohol use and repeated abstinence, providing a platform to extend mechanistic findings from rodents to primates.
View Article and Find Full Text PDFAlcohol dependence is associated with adverse consequences of alcohol (ethanol) use and is evident in most severe cases of alcohol use disorder (AUD). The central nucleus of the amygdala (CeA) plays a critical role in the development of alcohol dependence and escalation of alcohol consumption in dependent subjects. Molecular mechanisms underlying the CeA-driven behavioral changes are not well understood.
View Article and Find Full Text PDFAims: Alcohol use disorder (AUD) is linked to hyperactivity of brain stress systems, leading to withdrawal states which drive relapse. AUD differs among the sexes, as men are more likely to have AUD than women, but women progress from casual use to binge and heavy alcohol use more quickly and are more likely to relapse into repetitive episodes of heavy drinking. In alcohol dependence animal models of AUD, the central amygdala (CeA) functions as a hub of stress and anxiety processing and gamma-Aminobutyric acid (GABA)ergic signaling within the CeA is involved in dependence-induced increases in alcohol consumption.
View Article and Find Full Text PDFExcessive serotonin (5-HT) signaling plays a critical role in the etiology of alcohol use disorder. The central nucleus of the amygdala (CeA) is a key player in alcohol-dependence associated behaviors. The CeA receives dense innervation from the dorsal raphe nucleus, the major source of 5-HT, and expresses 5-HT receptor subtypes (e.
View Article and Find Full Text PDFMyeloid differentiation primary response protein (MyD88) is a critical neuroimmune adaptor protein in TLR (Toll-like receptor) and IL-1R (Interleukin-1 receptor) signaling complexes. These two pro-inflammatory families play an important role in the neurobiology of alcohol use disorder, specifically MyD88 regulates ethanol drinking, ethanol-induced sedation, and ethanol-induced deficits in motor coordination. In this study, we examined the role of MyD88 in mediating the effects of IL-1β and ethanol on GABAergic transmission in the central amygdala (CeA) of male mice using whole-cell patch-clamp recordings in combination with pharmacological (AS-1, a mimetic that prevents MyD88 recruitment by IL-1R) and genetic ( knockout mice) approaches.
View Article and Find Full Text PDFThe pituitary adenylate cyclase-activating polypeptide (PACAP) system plays a central role in the brain's emotional response to psychological stress by activating cellular processes and circuits associated with threat exposure. The neuropeptide PACAP and its main receptor PAC1 are expressed in the rodent central amygdala (CeA), a brain region critical in negative emotional processing, and CeA PACAPergic signaling drives anxiogenic and stress coping behaviors. Despite this behavioral evidence, PACAP's effects on neuronal activity within the medial subdivision of the CeA (CeM, the major output nucleus for the entire amygdala complex) during basal conditions and after psychological stress remain unknown.
View Article and Find Full Text PDFAdministration of selective serotonin reuptake inhibitors (SSRIs), typically used as antidepressants, induces long-lasting behavioral changes associated with alcohol use disorder (AUD). However, the contribution of SSRI (fluoxetine)-induced alterations in neurobiological processes underlying alcohol relapse such as endocannabinoid and glutamate signaling in the central amygdala (CeA) remains largely unknown. We utilized an integrative approach to study the effects of repeated fluoxetine administration during abstinence on ethanol drinking.
View Article and Find Full Text PDFThe interleukin-1 system (IL-1) is a prominent pro-inflammatory pathway responsible for the initiation and regulation of immune responses. Human genetic and preclinical studies suggest a critical role for IL-1β signaling in ethanol drinking and dependence, but little is known about the effects of chronic ethanol on the IL-1 system in addiction-related brain regions such as the central amygdala (CeA). In this study, we generated naïve, non-dependent (Non-Dep) and dependent (Dep) male mice using a paradigm of chronic-intermittent ethanol vapor exposure interspersed with two-bottle choice to examine 1) the expression of IL-1β, 2) the role of the IL-1 system on GABAergic transmission, and 3) the potential interaction with the acute effects of ethanol in the CeA.
View Article and Find Full Text PDFExcessive alcohol consumption in humans induces deficits in decision making and emotional processing, which indicates a dysfunction of the prefrontal cortex (PFC). The present study aimed to determine the impact of chronic intermittent ethanol (CIE) inhalation on mouse medial PFC pyramidal neurons. Data were collected 6-8 days into withdrawal from 7 weeks of CIE exposure, a time point when mice exhibit behavioral symptoms of withdrawal.
View Article and Find Full Text PDFAims: Stress induces neuroimmune responses via Toll-like receptor 4 (TLR4) activation. Here, we investigated the role of TLR4 in the effects of the stress peptide corticotropin-releasing factor (CRF) on GABAergic transmission in the central nucleus of the amygdala (CeA) following restraint stress.
Methods: Tlr4 knock out (KO) and wild-type rats were exposed to no stress (naïve), a single restraint stress (1 h) or repeated restraint stress (1 h per day for 3 consecutive days).
Background: Despite the high cost and widespread prevalence of alcohol use disorders, treatment options are limited, underscoring the need for new, effective medications. Previous results using protein kinase C epsilon (PKCε) knockout mice, RNA interference against PKCε, and peptide inhibitors of PKCε predict that small-molecule inhibitors of PKCε should reduce alcohol consumption in humans.
Methods: We designed a new class of PKCε inhibitors based on the Rho-associated protein kinase (ROCK) inhibitor Y-27632.
Corticotropin-releasing factor (CRF) signaling in the central nucleus of the amygdala (CeA) is hypothesized to drive the development of alcohol dependence, as it regulates ethanol intake and several anxiogenic behaviors linked to withdrawal. Excitatory glutamatergic neurotransmission contributes to alcohol reinforcement, tolerance and dependence. Therefore, in this study we used in vitro slice electrophysiology to investigate the effects of CRF and its receptor subtype (CRF and CRF) antagonists on both evoked and spontaneous action potential-independent glutamatergic transmission in the CeA of naive and ethanol-dependent Sprague-Dawley rats.
View Article and Find Full Text PDFThe central amygdala (CeA) GABAergic system is hypothesized to drive the development of alcohol dependence, due to its pivotal roles in the reinforcing actions of alcohol and the expression of negative emotion, anxiety and stress. Recent work has also identified an important role for the CeA corticotropin-releasing factor (CRF) system in the interaction between anxiety/stress and alcohol dependence. We have previously shown that acute alcohol and CRF each increase action potential-independent GABA release in the CeA via their actions at presynaptic CRF type 1 receptors (CRFs); however, the shared mechanism employed by these two compounds requires further investigation.
View Article and Find Full Text PDF