Publications by authors named "Varnum B"

One major challenge to studying human microbiome and its associated diseases is the lack of effective tools to achieve targeted modulation of individual species and study its ecological function within multispecies communities. Here, we show that C16G2, a specifically targeted antimicrobial peptide, was able to selectively kill cariogenic pathogen Streptococcus mutans with high efficacy within a human saliva-derived in vitro oral multispecies community. Importantly, a significant shift in the overall microbial structure of the C16G2-treated community was revealed after a 24-h recovery period: several bacterial species with metabolic dependency or physical interactions with S.

View Article and Find Full Text PDF

Axl is a receptor tyrosine kinase implicated in cell survival following growth factor withdrawal and other stressors. The binding of Axl's ligand, growth arrest-specific protein 6 (Gas6), results in Axl autophosphorylation, recruitment of signaling molecules, and activation of downstream survival pathways. Pull-down assays and immunoprecipitations using wildtype and mutant Axl transfected cells determined that Axl directly binds growth factor receptor-bound protein 2 (Grb2) at pYVN and the p85 subunit of phosphatidylinositol-3 kinase (PI3 kinase) at two pYXXM sites (pY779 and pY821).

View Article and Find Full Text PDF

Objective: To determine how donor health status affects the risk of infection after corneal transplant.

Methods: An adverse reaction surveillance registry was used to conduct a matched case-control study among transplanted donor corneas from January 1, 1994, to December 31, 2003. Cases comprised 162 reports of endophthalmitis after penetrating keratoplasty including 121 with microbial recovery, of which 59 had concordant donor and recipient microbial isolates.

View Article and Find Full Text PDF

Removal of apoptotic cells is an essential process for normal development and tissue maintenance. Importantly, apoptotic cells stimulate their phagocytosis by macrophages while actively suppressing inflammatory responses. Growth arrest specific gene 6 (Gas6) is involved in this process, bridging phosphatidylserine residues on the surface of apoptotic cells to the Axl/Mer family of tyrosine kinases which stimulate phagocytosis.

View Article and Find Full Text PDF

Efficient clearance of apoptotic cells is essential for tissue homeostasis, allowing for cellular turnover without inflammatory consequences. The Mer (Nyk and c-Eyk) receptor tyrosine kinase (Mertk) is involved in two aspects of apoptotic cell clearance by acting as a receptor for Gas6, a gamma-carboxylated phosphatidylserine-binding protein that bridges apoptotic and viable cells. First, Mertk acts in a bona fide engulfment pathway in concert with alphavbeta5 integrin by regulating cytoskeletal assemblages, and second, it acts as a negative regulator for inflammation by down-modulating pro-inflammatory signals mediated from bacterial lipopolysaccharide-Toll-like receptor 4 (TLR4) signaling, and hence recapitulating anti-inflammatory immune modulation by apoptotic cells.

View Article and Find Full Text PDF

Protein phosphorylation serves as a critical biochemical regulator of short-term and long-term synaptic plasticity. Receptor protein tyrosine kinases (RPTKs) including members of the trk, eph and erbB subfamilies have been shown to modulate signaling cascades that influence synaptic function in the central nervous system (CNS). Tyro3 is one of three RPTKs belonging to the "TAM" receptor family, which also includes Axl and Mer.

View Article and Find Full Text PDF

GnRH neurons migrate into the hypothalamus during development. Although migratory defects may result in disordered activation of the reproductive axis and lead to delayed or absent sexual maturation, specific factors regulating GnRH neuronal migration remain largely unknown. The receptor tyrosine kinase, adhesion-related kinase (Ark) (also known as Axl, UFO, and Tyro7), has been implicated in the migration of GnRH neuronal cells.

View Article and Find Full Text PDF

Membrane-bound receptors generate soluble ligand-binding domains either by proteolytic cleavage of the extracellular domain or alternative mRNA splicing yielding a secreted protein. Mertk (Mer) is in a receptor tyrosine kinase family with Axl and Tyro-3, and all 3 receptors share the Gas6 ligand. Mer regulates macrophage activation, promotes apoptotic cell engulfment, and supports platelet aggregation and clot stability in vivo.

View Article and Find Full Text PDF

We consider the interaction between interleukin-1 IL-1, its receptor IL-1RI, the receptor antagonist IL-1Ra and a decoy receptor (or trap) that binds both with the ligand and the antagonist. We study how the interaction between IL-1Ra and the decoy receptor influences the effect of either reagent on reducing the equilibrium concentration of the receptor-ligand complex. We obtain that, given a certain relationship among the equilibrium constants and the total concentrations of solutes, IL-1Ra can reverse the effect of the decoy receptor of decreasing the equilibrium concentration of the receptor-ligand complex.

View Article and Find Full Text PDF

Growth arrest-specific protein 6 (gas6) activity is mediated through the receptor tyrosine kinase family members Axl, Rse, and Mer, all of which are expressed in human oligodendrocytes. In this study, we examined whether recombinant human (rh) gas6 protects oligodendrocytes from growth factor (insulin) withdrawal or tumor necrosis factor-alpha (TNFalpha) cytotoxicity. In addition, we examined whether the effect was caspase-dependent, which receptor mediated the protective effect, and whether survival required Akt1 activation.

View Article and Find Full Text PDF

GAS6, the product of a growth arrest specific (GAS) gene, is the ligand of the tyrosine kinase receptor Axl. GAS6 and Axl are both expressed in endothelial cells, where they are involved in many processes such as leukocyte transmigration through capillaries and neointima formation in injured vessels. Here, we show that Axl stimulation by GAS6 results in inhibition of the ligand-dependent activation of vascular endothelial growth factor (VEGF) receptor 2 and the consequent activation of an angiogenic program in vascular endothelial cells.

View Article and Find Full Text PDF

Gas6 is a gamma-carboxylated ligand for the receptor tyrosine kinase Axl. Gas6-Axl interactions can rescue endothelial cells from apoptosis, and this study examined the intracellular signaling mechanisms responsible for this phenomenon. Using flow cytometry, we first confirmed that Gas6 can abrogate apoptosis induced by serum starvation of primary cultures of human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

Metastatic tumor cells originating from cancers of a variety of tissues such as breast, skin, and prostate may remain dormant for long periods of time. In the case of uveal melanoma, the principal malignancy of the eye, complete removal of the primary tumor by enucleation can nonetheless be followed by metastatic tumor growth in distant organs months, years, or even decades later. This suggests that tumor cells have already spread to secondary sites at the time of treatment and remain dormant as micrometastases.

View Article and Find Full Text PDF

This study examined whether the calcium-sensing receptor (CaR) is expressed in normal adult human osteoblastic and osteoclastic cells in culture, and whether the calcimimetic, cinacalcet HCl (AMG 073), potentiates the effects of calcium (via CaR, or some other receptor/mechanism). When mouse or human osteoblastic cells were treated with higher concentrations of calcium (6.6 or 8.

View Article and Find Full Text PDF

Microarray analysis revealed that transcripts for the Axl and Mer receptor tyrosine kinases are expressed at high levels in O4+-immunopanned oligodendrocytes isolated from second trimester human fetal spinal cord. In humans the sole known ligand for the Axl/Rse/Mer kinases is growth arrest-specific gene 6 (Gas6), which in the CNS is secreted by neurons and endothelial cells. We hypothesized that Gas6 is a survival factor for oligodendrocytes and receptor activation signals downstream to the phosphatidylinositol 3 (PI3)-kinase/Akt pathway to increase cell survival in the absence of cell proliferation.

View Article and Find Full Text PDF

Vascular pericytes undergo osteogenic differentiation in vivo and in vitro and may, therefore, be involved in diseases involving ectopic calcification and osteogenesis. The purpose of this study was to identify factors that inhibit the entry of pericytes into this differentiation pathway. RNA was prepared from pericytes at confluence and after their osteogenic differentiation (mineralized nodules).

View Article and Find Full Text PDF

Mer is a member of the Axl/Mer/Tyro3 receptor tyrosine kinase family, a family whose physiological function is not well defined. We constructed a Mer chimera using the epidermal growth factor receptor (EGFR) extracellular and transmembrane domains and the Mer cytoplasmic domain. Stable transfection of the Mer chimera into interleukin 3 (IL-3)-dependent murine 32D cells resulted in ligand-activable surface receptor that tyrosine autophosphorylated, stimulated intracellular signaling, and dramatically reduced apoptosis initiated by IL-3 withdrawal.

View Article and Find Full Text PDF

Adenovirus type 5 E1A protein (E1A) associates with anti-tumor activities by reversing the transformed phenotype, inhibiting metastasis, and inducing apoptosis. We have previously identified that E1A suppresses the expression of Axl, a transforming tyrosine kinase and that Axl-Gas6 receptor-ligand interaction prevents E1A transfectants from apoptosis induced by serum deprivation. To determine how the Axl-Gas6 interaction prevents E1A-mediated apoptosis, we analysed the expression of anti-apoptotic molecules and found that the activated form of Akt was suppressed in the E1A transfectant ip 1-E1A and that Gas6 was able to activate Akt in ip 1-E1A cells reexpressing Axl (ip 1-E1A-Axl).

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) is the central regulator of the reproductive axis. Normal sexual maturation depends on the migration of GnRH neurons from the olfactory placode to the hypothalamus during development. Previously, we showed restricted expression of the membrane receptor adhesion-related kinase (Ark) in immortalized cell lines derived from migratory but not postmigratory GnRH neurons.

View Article and Find Full Text PDF

The growth arrest-specific 6 gene product Gas6 is a growth and survival factor related to protein S. Gas6 is the ligand of Axl receptor tyrosine kinase; upon binding to its receptor Gas6 activates the phosphatidylinositol 3-OH kinase (PI3K) and its downstream targets S6K and Akt. Gas6 anti-apoptotic signaling was previously shown to require functional PI3K and Akt and to involve Bad phosphorylation in serum-starved NIH 3T3 cells.

View Article and Find Full Text PDF

We examined Gas 6-Axl interactions in human pulmonary artery endothelial cells (HPAEC) and in Axl-transduced HPAEC to test Gas 6 function during endothelial cell survival. We identified the 5.0-kb Axl, 4.

View Article and Find Full Text PDF

Proliferation of mesangial cells is a hallmark of glomerular disease, and understanding its regulatory mechanism is clinically important. Previously, we demonstrated that the product of growth arrest-specific gene 6 (Gas6) stimulates mesangial cell proliferation through binding to its cell-surface receptor Axl in vitro. We also showed that warfarin and the extracellular domain of Axl conjugated with Fc portion of human IgG1 (Axl-Fc) inhibit mesangial cell proliferation by interfering the Gas6/Axl pathway in vitro.

View Article and Find Full Text PDF

Gas6 is a growth factor related to protein S that was identified as the ligand for the Axl receptor tyrosine kinase (RTK) family. In this study, we show that Gas6 induces a growth response in a cultured mammalian mammary cell line, C57MG. The presence of Gas6 in the medium induces growth after confluence and similarly causes cell cycle reentry of density-inhibited C57MG cells.

View Article and Find Full Text PDF