One of the key factors, which hampers the application of metallic glasses as structural components, is the localization of deformation in narrow bands of a few tens up to one hundred nanometers thickness, the so-called shear bands. Processes, which occur inside shear bands are of central importance for the question whether a catastrophic failure of the material is unavoidable or can be circumvented or, at least, delayed. Via molecular dynamics simulations, this study addresses one of these processes, namely the local temperature rise due to viscous heat generation.
View Article and Find Full Text PDFWe investigate the effect of low temperature (cryogenic) thermal cycling on dynamics of a generic model glass via molecular dynamics simulations. By calculating mean squared displacements after a varying number of cycles, a pronounced enhancement of dynamics is observed. This rejuvenation effect is visible already after the first cycle and accumulates upon further cycling in an intermittent way.
View Article and Find Full Text PDFWe investigate the effect of low temperature (cryogenic) thermal cycling on a generic model glass and observe signature of rejuvenation in terms of per-particle potential energy distributions. Most importantly, these distributions become broader and its average values successively increase when applying consecutive thermal cycles. We show that linear dimension plays a key role for these effects to become visible, since we do only observe a weak effect for a cubic system of roughly one hundred particle diameter but observe strong changes for a rule-type geometry with the longest length being two thousand particle diameters.
View Article and Find Full Text PDFTissue degradation plays a crucial role in vascular diseases such as atherosclerosis and aneurysms. Computational modeling of vascular hemodynamics incorporating both arterial wall mechanics and tissue degradation has been a challenging task. In this study, we propose a novel finite element method-based approach to model the microscopic degradation of arterial walls and its interaction with blood flow.
View Article and Find Full Text PDFTissue degradation plays a crucial role in the formation and rupture of aneurysms. Using numerical computer simulations, we study the combined effects of blood flow and tissue degradation on intra-aneurysm hemodynamics. Our computational analysis reveals that the degradation-induced changes of the time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI) within the aneurysm dome are inversely correlated.
View Article and Find Full Text PDFIn the present work, we study the role of programming strain (50% and 100%), end loads (0, 0.5, 1.0, and 1.
View Article and Find Full Text PDFSmall additive molecules often enhance structural relaxation in polymers. We explore this effect in a thermoplastic shape memory polymer via molecular dynamics simulations. The additive-to-monomer size ratio is shown to play a key role here.
View Article and Find Full Text PDFThis paper represents a model for microstructure formation in metallic foams based on the multi-phase-field approach. The model allows to naturally account for the effect of additives which prevent two gas bubbles from coalescence. By applying a non-merging criterion to the phase fields and at the same time raising the free energy penalty associated with additives, it is possible to completely prevent coalescence of bubbles in the time window of interest and thus focus on the formation of a closed porous microstructure.
View Article and Find Full Text PDFAdding plasticizers is a well-known procedure to reduce the glass transition temperature in polymers. It has been recently shown that this effect shows a non-monotonic dependence on the size of additive molecules (2019 J. Chem.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
May 2020
The thin interface limit of the phase-field model is extended to include transport via melt convection. A double-sided model (equal diffusivity in liquid and solid phases) is considered for the present analysis. For the coupling between phase-field and Navier-Stokes equations, two commonly used schemes are investigated using a matched asymptotic analysis: (i) variable viscosity and (ii) drag force model.
View Article and Find Full Text PDFWe study the interface tracking characteristics of a color-gradient-based lattice Boltzmann model for immiscible flows. Investigation of the local density change in one of the fluid phases, via a Taylor series expansion of the recursive lattice Boltzmann equation, leads to the evolution equation of the order parameter that differentiates the fluids. It turns out that this interface evolution follows a conservative Allen-Cahn equation with a mobility which is independent of the fluid viscosities and surface tension.
View Article and Find Full Text PDFBlood flow in an artery is a fluid-structure interaction problem. It is widely accepted that aneurysm formation, enlargement and failure are associated with wall shear stress (WSS) which is exerted by flowing blood on the aneurysmal wall. To date, the combined effect of aneurysm size and wall elasticity on intra-aneurysm (IA) flow characteristics, particularly in the case of side-wall aneurysms, is poorly understood.
View Article and Find Full Text PDFRecent experiments provide evidence for density variations along shear bands in metallic glasses with a length scale of a few hundred nanometers. Via molecular dynamics simulations of a generic binary glass model, here we show that this is strongly correlated with variations of composition, coordination number, viscosity, and heat generation. Individual shear events along the shear band path show a mean distance of a few nanometers, comparable to recent experimental findings on medium range order.
View Article and Find Full Text PDFEffect of small additive molecules on the structural relaxation of polymer melts is investigated via molecular dynamics simulations. At a constant external pressure and a fixed number concentration of added molecules, the variation of the particle diameter leads to a non-monotonic change of the relaxation dynamics of the polymer melt. For non-entangled chains, this effect is rationalized in terms of an enhanced added-particle-dynamics which competes with a weaker coupling strength upon decreasing the particle size.
View Article and Find Full Text PDFFlow behavior of a single-component yield stress fluid is addressed on the hydrodynamic level. A basic ingredient of the model is a coupling between fluctuations of density and velocity gradient via a Herschel-Bulkley-type constitutive model. Focusing on the limit of low shear rates and high densities, the model approximates well-but is not limited to-gently sheared hard sphere colloidal glasses, where solvent effects are negligible.
View Article and Find Full Text PDFThe multi-phase-field approach is generalized to treat capillarity-driven diffusion parallel to the surfaces and phase boundaries, i.e., the boundaries between a condensed phase and its vapor and the boundaries between two or multiple condensed phases.
View Article and Find Full Text PDFThe relaxation dynamics of glass forming liquids and their structure are influenced in the vicinity of confining walls. This effect has mostly been observed to be a monotonic function of the slit width. Recently, a qualitatively new behaviour has been uncovered by Mittal and coworkers, who reported that the single particle dynamics in a hard-sphere fluid confined in a planar slit varies in a non-monotonic way as the slit width is decreased from five to roughly two particle diametres (Mittal et al 2008 Phys.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2015
Fluid dynamical equations in the presence of a diffuse solid-liquid interface are investigated via a volume averaging approach. The resulting equations exhibit the same structure as the standard Navier-Stokes equation for a Newtonian fluid with a constant viscosity, the effect of the solid phase fraction appearing in the drag force only. This considerably simplifies the use of the lattice Boltzmann method as a fluid dynamics solver in solidification simulations.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2015
Current implementations of fluctuating lattice Boltzmann equations (FLBEs) describe single component fluids. In this paper, a model based on the continuum kinetic Boltzmann equation for describing multicomponent fluids is extended to incorporate the effects of thermal fluctuations. The thus obtained fluctuating Boltzmann equation is first linearized to apply the theory of linear fluctuations, and expressions for the noise covariances are determined by invoking the fluctuation-dissipation theorem directly at the kinetic level.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2015
The effect of shear flow on mode selection and the length scale of patterns formed in a nonlinear autocatalytic reaction-diffusion model is investigated. We predict analytically the existence of transverse and longitudinal modes. The type of the selected mode strongly depends on the difference in the flow rates of the participating species, quantified by the differential flow parameter.
View Article and Find Full Text PDFGlass-forming liquids exhibit a rich phenomenology upon confinement. This is often related to the effects arising from wall-fluid interactions. Here we focus on the interesting limit where the separation of the confining walls becomes of the order of a few particle diameters.
View Article and Find Full Text PDFIn a recent paper [Mandal et al., Phys. Rev.
View Article and Find Full Text PDFWe study the shearing rheology of dense suspensions of elastic capsules, taking aggregation-free red blood cells as a physiologically relevant example. Particles are non-Brownian and interact only via hydrodynamics and short-range repulsive forces. An analysis of the different stress mechanisms in the suspension shows that the viscosity is governed by the shear elasticity of the capsules, whereas the repulsive forces are subdominant.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2013
Via event-driven molecular dynamics simulations and experiments, we study the packing-fraction and shear-rate dependence of single-particle fluctuations and dynamic correlations in hard-sphere glasses under shear. At packing fractions above the glass transition, correlations increase as shear rate decreases: the exponential tail in the distribution of single-particle jumps broadens and dynamic four-point correlations increase. Interestingly, however, upon decreasing the packing fraction, a broadening of the exponential tail is also observed, while dynamic heterogeneity is shown to decrease.
View Article and Find Full Text PDF