Cellulose-derived biomaterials offer a sustainable and versatile platform for various applications. Enzymatic engineering of these fibers, particularly using lytic polysaccharide monooxygenases (LPMOs), shows promise due to the ability to introduce functional groups onto cellulose surfaces, potentially enabling further functionalization. However, harnessing LPMOs for fiber engineering remains challenging, partly because controlling the enzymatic reaction is difficult and partly because limited information is available about how LPMOs modify the fibers.
View Article and Find Full Text PDFUnlabelled: Freshwater ecosystems can be largely affected by neighboring agriculture fields where potential fertilizer nitrate run-off may leach into surrounding water bodies. To counteract this eutrophic driver, farmers in certain areas are utilizing denitrifying woodchip bioreactors (WBRs) in which a consortium of microorganisms convert the nitrate into nitrogen gases in anoxia, fueled by the degradation of lignocellulose. Polysaccharide-degrading strategies have been well described for various aerobic and anaerobic systems, including the use of carbohydrate-active enzymes, utilization of lytic polysaccharide monooxygenases (LPMOs) and other redox enzymes, as well as the use of cellulosomes and polysaccharide utilization loci (PULs).
View Article and Find Full Text PDFBackground: In recent years, lytic polysaccharide monooxygenases (LPMOs) that oxidatively cleave cellulose have gained increasing attention in cellulose fiber modification. LPMOs are relatively small copper-dependent redox enzymes that occur as single domain proteins but may also contain an appended carbohydrate-binding module (CBM). Previous studies have indicated that the CBM "immobilizes" the LPMO on the substrate and thus leads to more localized oxidation of the fiber surface.
View Article and Find Full Text PDFFluorescence labeling with N-(1-naphthyl)ethylenediamine is highly effective for quantifying oxidized reducing end groups (REGs) in cellulosic materials. When combined with size exclusion chromatography in DMAc/LiCl, along with fluorescence / multiple-angle laser light scattering / refractive index detection, a detailed profile of C1-oxidized REGs relative to the molecular weight distribution of the cellulosic material can be obtained. In this work, the derivatization process was extensively optimized, to be carried out heterogeneously in the solvent N-methyl-2-pyrrolidone.
View Article and Find Full Text PDFDespite the wide range of analytical tools available for the characterization of cellulose, the in-depth characterization of inhomogeneous, layered cellulose fiber structures remains a challenge. When treating fibers or spinning man-made fibers, the question always arises as to whether the changes in the fiber structure affect only the surface or the entire fiber. Here, we developed an analysis tool based on the sequential limited dissolution of cellulose fiber layers.
View Article and Find Full Text PDFBackground: The polysaccharides in lignocellulosic biomass hold potential for production of biofuels and biochemicals. However, achieving efficient conversion of this resource into fermentable sugars faces challenges, especially when operating at industrially relevant high solid loadings. While it is clear that combining classical hydrolytic enzymes and lytic polysaccharide monooxygenases (LPMOs) is necessary to achieve high saccharification yields, exactly how these enzymes synergize at high solid loadings remains unclear.
View Article and Find Full Text PDFLytic polysaccharide monooxygenases (LPMOs) are excellent candidates for enzymatic functionalization of natural polysaccharides, such as cellulose or chitin, and are gaining relevance in the search for renewable biomaterials. Here, we assessed the cellulose fiber modification potential and catalytic performance of eleven cellulose-active fungal AA9-type LPMOs, including C1-, C4-, and C1/C4-oxidizing LPMOs with and without CBM1 carbohydrate-binding modules, on cellulosic substrates with different degrees of crystallinity and polymer chain arrangement, namely, Cellulose I, Cellulose II, and amorphous cellulose. The potential of LPMOs for cellulose fiber modification varied among the LPMOs and depended primarily on operational stability and substrate binding, and, to some extent, also on regioselectivity and domain structure.
View Article and Find Full Text PDFEnzymatic treatment of cellulosic fibres is a green alternative to classical chemical modification. For many applications, mild procedures for cellulose alteration are sufficient, in which the fibre structure and, therefore, the mechanical performance of cellulosic fibres are preserved. Lytic polysaccharide monooxygenases (LPMOs) bear a great potential to become a green reagent for such targeted cellulose modifications.
View Article and Find Full Text PDFLytic polysaccharide monooxygenases (LPMOs) are mono-copper enzymes that use O or HO to oxidatively cleave glycosidic bonds. LPMOs are prevalent in nature, and the functional variation among these enzymes is a topic of great interest. We present the functional characterization of one of the 22 putative AA9-type LPMOs from the fungus Schizophyllum commune, ScLPMO9A.
View Article and Find Full Text PDFLytic polysaccharide monooxygenases (LPMOs) belonging to the AA14 family are believed to contribute to the enzymatic degradation of lignocellulosic biomass by specifically acting on xylan in recalcitrant cellulose-xylan complexes. Functional characterization of an AA14 LPMO from Trichoderma reesei, TrAA14A, and a re-evaluation of the properties of the previously described AA14 from Pycnoporus coccineus, PcoAA14A, showed that these proteins have oxidase and peroxidase activities that are common for LPMOs. However, we were not able to detect activity on cellulose-associated xylan or any other tested polysaccharide substrate, meaning that the substrate of these enzymes remains unknown.
View Article and Find Full Text PDFLignocellulosic biomass is the most abundant source of carbon-based material on a global basis, serving as a raw material for cellulosic fibers, hemicellulosic polymers, platform sugars, and lignin resins or monomers. In nature, the various components of lignocellulose (primarily cellulose, hemicellulose, and lignin) are decomposed by saprophytic fungi and bacteria utilizing specialized enzymes. Enzymes are specific catalysts and can, in many cases, be produced on-site at lignocellulose biorefineries.
View Article and Find Full Text PDFLignocellulosic biomass is a renewable source of energy, chemicals and materials. Many applications of this resource require the depolymerization of one or more of its polymeric constituents. Efficient enzymatic depolymerization of cellulose to glucose by cellulases and accessory enzymes such as lytic polysaccharide monooxygenases is a prerequisite for economically viable exploitation of this biomass.
View Article and Find Full Text PDFSimultaneous saccharification and fermentation (SSF) is a well-known strategy for valorization of lignocellulosic biomass. Because the fermentation process typically is anaerobic, oxidative enzymes found in modern commercial cellulase cocktails, such as lytic polysaccharide monooxygenases (LPMOs), may be inhibited, limiting the overall efficiency of the enzymatic saccharification. Recent discoveries, however, have shown that LPMOs are active under anoxic conditions if they are provided with H O at low concentrations.
View Article and Find Full Text PDFGiant panda could have bamboo as their exclusive diet for about 2 million years because of the contribution of numerous enzymes produced by their gut bacteria, for instance laccases. Laccases are blue multi-copper oxidases that catalyze the oxidation of a broad spectrum of phenolic and aromatic compounds with water as the only byproduct. As a "green enzyme," laccases have potential in industrial applications, for example, when dealing with degradation of recalcitrant biopolymers, such as lignin.
View Article and Find Full Text PDFLytic polysaccharide monooxygenases (LPMOs) are mono-copper enzymes that oxidatively degrade various polysaccharides. Genes encoding LPMOs in the AA9 family are abundant in filamentous fungi while their multiplicity remains elusive. We describe a detailed functional characterization of six AA9 LPMOs from the ascomycetous fungus LPH172 (syn.
View Article and Find Full Text PDFThe discovery of oxidative cleavage of recalcitrant polysaccharides by lytic polysaccharide monooxygenases (LPMOs) has affected the study and industrial application of enzymatic biomass processing. Despite being widespread in fungi, LPMOs belonging to the auxiliary activity (AA) family AA11 have been understudied. While these LPMOs are considered chitin active, some family members have little or no activity toward chitin, and the only available crystal structure of an AA11 LPMO lacks features found in bacterial chitin-active AA10 LPMOs.
View Article and Find Full Text PDFFamily AA9 lytic polysaccharide monooxygenases (LPMOs) are abundant in fungi, where they catalyze oxidative depolymerization of recalcitrant plant biomass. These AA9 LPMOs cleave cellulose and some also act on hemicelluloses, primarily other (substituted) β-(1→4)-glucans. Oxidative cleavage of xylan has been shown for only a few AA9 LPMOs, and it remains unclear whether this activity is a minor side reaction or primary function.
View Article and Find Full Text PDFBackground: Biochemical conversion of lignocellulosic biomass to simple sugars at commercial scale is hampered by the high cost of saccharifying enzymes. Lytic polysaccharide monooxygenases (LPMOs) may hold the key to overcome economic barriers. Recent studies have shown that controlled activation of LPMOs by a continuous HO supply can boost saccharification yields, while overdosing HO may lead to enzyme inactivation and reduce overall sugar yields.
View Article and Find Full Text PDFBackground: The discovery of lytic polysaccharide monooxygenases (LPMO) has changed our perspective on enzymatic degradation of plant biomass. Through an oxidative mechanism, these enzymes are able to cleave and depolymerize various polysaccharides, acting not only on crystalline substrates such as chitin and cellulose, but also on other polysaccharides, such as xyloglucan, glucomannan and starch. Despite their widespread use, uncertainties related to substrate specificity and stereospecificity, the nature of the co-substrate, in-process stability, and the nature of the optimal reductant challenge their exploitation in biomass processing applications.
View Article and Find Full Text PDFThe efficiency of microorganisms to degrade lignified plants is of great importance in the Earth's carbon cycle, but also in industrial biorefinery processes, such as for biofuel production. Here, we present a large-scale proteomics approach to investigate and compare the enzymatic response of five filamentous fungi when grown on five very different substrates: grass (sugarcane bagasse), hardwood (birch), softwood (spruce), cellulose and glucose. The five fungi included the ascomycetes Aspergillus terreus, Trichoderma reesei, Myceliophthora thermophila, Neurospora crassa and the white-rot basidiomycete Phanerochaete chrysosporium, all expressing a diverse repertoire of enzymes.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
October 2020
Efficient saccharification of lignocellulosic biomass requires concerted development of a pretreatment method, an enzyme cocktail and an enzymatic process, all of which are adapted to the feedstock. Recent years have shown great progress in most aspects of the overall process. In particular, increased insights into the contributions of a wide variety of cellulolytic and hemicellulolytic enzymes have improved the enzymatic processing step and brought down costs.
View Article and Find Full Text PDFAspergillus tamarii grows abundantly in naturally composting waste fibers of the textile industry and has a great potential in biomass decomposition. Amongst the key (hemi)cellulose-active enzymes in the secretomes of biomass-degrading fungi are the lytic polysaccharide monooxygenases (LPMOs). By catalyzing oxidative cleavage of glycoside bonds, LPMOs promote the activity of other lignocellulose-degrading enzymes.
View Article and Find Full Text PDFLytic polysaccharide monooxygenases (LPMOs) are relatively new enzymes that have been discovered 10 years ago. LPMOs comprise a diverse group of enzymes which play a pivotal role in the depolymerization of sugar-based biopolymers including cellulose, hemicellulose, chitin, and starch. Their mechanism of action relies on the correct coordination of a copper ion in the active site, which is partly composed of the N-terminal histidine.
View Article and Find Full Text PDFThe thermophilic biomass-degrader exhibits poor growth on cellulose but excellent growth on hemicelluloses as the sole carbon source. This is surprising considering that its genome encodes eight lytic polysaccharide monooxygenases (LPMOs) from auxiliary activity family 9 (AA9), enzymes known for their high potential in accelerating cellulose depolymerization. We characterized four of the eight ( AA9s) AA9s, namely, AA9A, AA9B, AA9F, and AA9H, to gain a deeper understanding about their roles in the fungus.
View Article and Find Full Text PDFMany fungi produce multiple lytic polysaccharide monooxygenases (LPMOs) with seemingly similar functions, but the biological reason for this multiplicity remains unknown. To address this question, here we carried out comparative structural and functional characterizations of three cellulose-active C4-oxidizing family AA9 LPMOs from the fungus , LPMO9A (NCU02240), LPMO9C (NCU02916), and LPMO9D (NCU01050). We solved the three-dimensional structure of copper-bound LPMO9A at 1.
View Article and Find Full Text PDF