Uterine leiomyomas (UL) are the most prevalent benign tumors of the female reproductive tract, originating from the myometrium and affecting over 75% of reproductive-age women. Symptoms of UL include pelvic pain, pressure, dysmenorrhea, menorrhagia, anemia, and reproductive dysfunction. Currently, there is no effective long-term pharmacotherapy for UL, making them the leading cause of hysterectomies in the United States.
View Article and Find Full Text PDFCompared to most ATP-site kinase inhibitors, small molecules that target an allosteric pocket have the potential for improved selectivity due to the often observed lower structural similarity at these distal sites. Despite their promise, relatively few examples of structurally confirmed, high-affinity allosteric kinase inhibitors exist. Cyclin-dependent kinase 2 (CDK2) is a target for many therapeutic indications, including non-hormonal contraception.
View Article and Find Full Text PDFUterine leiomyomas (UL) are benign tumors that arise in the myometrial layer of the uterus. The standard treatment option for UL is hysterectomy, although hormonal therapies, such as selective progesterone receptor modulators, are often used as temporary treatment options to reduce symptoms or to slow the growth of tumors. However, since the pathogenesis of UL is poorly understood and most hormonal therapies are not based on UL-specific, divergent hormone signaling pathways, hallmarks that predict long-term efficacy and safety of pharmacotherapies remain largely undefined.
View Article and Find Full Text PDFBackground: Breast cancer is the most common malignancy in women, and is both pathologically and genetically heterogeneous, making early detection and treatment difficult. A subset of breast cancers express normal levels of REST (repressor element 1 silencing transcription factor) mRNA but lack functional REST protein. Loss of REST function is seen in ~ 20% of breast cancers and is associated with a more aggressive phenotype and poor prognosis.
View Article and Find Full Text PDFUterine fibroids, also known as uterine leiomyoma (UL), are monoclonal tumors of the smooth muscle tissue layer (myometrium) of the uterus. Although ULs are considered benign, uterine fibroids are the source of major quality-of-life issues for approximately 25% of all women, who suffer from clinically significant symptoms of UL. Despite the prevalence of UL, there is no treatment option for UL which is long term, cost-effective, and leaves fertility intact.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2013
Uterine fibroids (leiomyomas) are the most common tumors of the female reproductive tract, occurring in up to 77% of reproductive-aged women, yet molecular pathogenesis remains poorly understood. A role for atypically activated mammalian target of rapamycin (mTOR) pathway in the pathogenesis of uterine fibroids has been suggested in several studies. We identified that G protein-coupled receptor 10 [GPR10, a putative signaling protein upstream of the phosphoinositide 3-kinase-protein kinase B/AKT-mammalian target of rapamycin (PI3K/AKT-mTOR) pathway] is aberrantly expressed in uterine fibroids.
View Article and Find Full Text PDFPurpose: Expression of the Na,K-ATPase α4 isoform is required for sperm motility and fertility and is controlled by the Atp1a4 promoter. Here, we have investigated the specific tissue, cell type and developmental regulation of expression mediated by the Atp1a4 promoter.
Methods: We have inserted the green fluorescent protein (GFP), downstream of the endogenous Atp1a4 promoter, in place of the Na,K-ATPase α4 gene, and used it as a marker for α4 expression in mice (Atp1a4 ( null(GFP) ) mice).
Objective: To determine whether programmed cell death 4 (PDCD-4) is altered in autologous leiomyoma and myometrial tissues and what microRNA-21's (miR-21) role is in PDCD-4 expression, apoptosis, and translation.
Design: Laboratory research.
Setting: Academic medical center.
A sensitive LC/MS/MS method has been developed by derivatization of 17beta-estradiol (E2) with dansyl chloride to quantitate 17beta-E2 in female rat serum. The use of E2-d(5) minimized interferences from endogenous 17beta-E2 in order to achieve a limit of quantitation (LOQ) of 2.5 pg/ml using 150 microl of female rat serum.
View Article and Find Full Text PDFSelective estrogen receptor modulators (SERMs) have the potential to treat estrogen sensitive diseases such as uterine leiomyoma and endometriosis, which are prevalent in reproductive age women. However, SERMs also increase the risk of developing ovarian cysts in this population, a phenomenon that is not seen in postmenopausal women. It is believed that current SERMs partially block estradiol's ability to downregulate gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus thereby interfering with estradiol's negative feedback, leading to increased ovarian stimulation by gonadotropins, and cyst formation.
View Article and Find Full Text PDFThe availability of sequenced genomes of human and many experimental animals necessitated the development of new technologies and powerful computational tools that are capable of exploiting these genomic data and ask intriguing questions about complex nature of biological processes. This gave impetus for developing whole genome approaches that can produce functional information of genes in the form of expression profiles and unscramble the relationships between variation in gene expression and the resulting physiological outcome. These profiles represent genetic fingerprints or catalogue of genes that characterize the cell or tissue being studied and provide a basis from which to begin an investigation of the underlying biology.
View Article and Find Full Text PDFBackground: Vaginal atrophy (VA) is a prevalent disorder in postmenopausal women that is characterized by decreased epithelial thickness, reduced vaginal maturation index (VMI) and increased vaginal pH. Current medical therapy consists of local or systemic replacement of estrogens.
Objective: The goal of this study was to understand, at a molecular level, the effect of estradiol (E2) on the vaginal epithelium.
Translin associated factor X (TRAX) is a binding partner of TB-RBP/Translin. A cDNA encoding the 260 C-terminal amino acids of KIF2Abeta was isolated from mouse testis cDNAs in a yeast two-hybrid library screen for specific TRAX-interacting proteins. KIF2Abeta was expressed predominantly in the mouse testis and enriched in germ cells.
View Article and Find Full Text PDFTestis brain RNA-binding protein (TB-RBP), the mouse orthologue of human translin, is an RNA and single-stranded DNA-binding protein abundant in testis and brain. Translin-associated factor X (TRAX) was identified as a protein that interacts with TB-RBP and is dependent upon TB-RBP for stabilization. Using immunohistochemistry to investigate the subcellular locations of TB-RBP and TRAX during spermatogenesis, both proteins localize in nuclei in meiotic pachytene spermatocytes and in the cytoplasm of subsequent meiotic and post-meiotic cells.
View Article and Find Full Text PDFTo determine the functions of the DNA/RNA-binding protein TB-RBP in somatic cells, we examined cultured primary mouse embryonic fibroblasts (MEFs) derived from TB-RBP-deficient mice. The TB-RBP-deficient MEFs exhibit a reduced growth rate compared with MEFs from littermates. Reintroduction of TB-RBP remedies this defect.
View Article and Find Full Text PDFTestis brain RNA-binding protein (TB-RBP), the mouse orthologue of the human protein Translin, is a widely expressed and highly conserved protein with proposed functions in chromosomal translocations, mitotic cell division, and mRNA transport, stabilization, and storage. Targeted inactivation of TB-RBP leads to abnormalities in fertility and behavior. A testis-enriched kinesin KIF17b coimmunoprecipitates with TB-RBP in a RNA-protein complex containing specific cAMP-responsive element modulator (CREM)-regulated mRNAs.
View Article and Find Full Text PDFTestis-brain RNA-binding protein (TB-RBP), the mouse orthologue of the human protein Translin, is a widely expressed and highly conserved protein with proposed functions in chromosomal translocations, mitotic cell division, and mRNA transport and storage. To better define the biological roles of TB-RBP, we generated mice lacking TB-RBP. Matings between heterozygotes gave rise to viable, apparently normal homozygous mutant mice at a normal Mendelian ratio.
View Article and Find Full Text PDFThe testis brain RNA-binding protein (TB-RBP/translin) is a DNA- and RNA-binding protein with multiple functions. As an RNA-binding protein, TB-RBP binds to conserved sequence elements often present in the 3' untranslated regions (UTRs) of specific mRNAs modulating their translation and transport. To identify additional mRNA targets of TB-RBP, immunoprecipitation and reverse transcription-polymerase chain reaction (RT-PCR) assays were carried out using an affinity-purified antibody to TB-RBP with testicular extracts.
View Article and Find Full Text PDFInfection is believed to be a leading cause of preterm premature rupture of membranes (PPROM). The bacterial cell wall component, lipopolysaccharide (LPS), is thought to initiate tissue responses leading to PPROM in the setting of Gram negative infection. LPS is recognized by the innate immune system, including the proteins encoded by the CARD15 and TLR4 genes.
View Article and Find Full Text PDFcDNAs were cloned for the murine and human orthologues of Chlamydomonas PF20, a component of the alga axoneme central apparatus that is required for flagellar motility. The mammalian genes encode transcripts of 1.4 and 2.
View Article and Find Full Text PDFThe testis brain RNA-binding protein (TB-RBP) functions as an RNA-binding protein in brain and testis, binding to conserved sequence elements present in specific mRNAs, such as protamine 1 and 2. We show here by RNA gel shift assays, immunoprecipitation, and by a novel in situ hybridization immunohistochemical technique that TB-RBP binds to AKAP4 mRNA in male mouse germ cells. AKAP4 is a component of the fibrous sheath and functions as a scaffolding protein in the sperm flagellum.
View Article and Find Full Text PDFTranslin-associated factor X (TRAX) is the predominantly cytoplasmic binding partner of TB-RBP/translin in mouse testis. Four mouse testis cDNAs encoding specific TRAX-interacting proteins were isolated from a yeast two-hybrid library screen. One novel cDNA designated Tsnaxip1 (TRAX-interacting protein-1) encodes 709 amino acids.
View Article and Find Full Text PDF