Publications by authors named "Varenka Rodriguez DiBlasi"

Article Synopsis
  • Tumor cell-derived prostaglandin E2 (PGE2) promotes immunosuppression in the tumor microenvironment by influencing immune cells, but its specific role in tumor cells remains unexplored.
  • Deleting the PGE2 synthesis enzyme or blocking its receptor (EP4) in pancreatic cancer cells activates T cells, changes the immune environment, and inhibits tumor growth.
  • Combining EP4 receptor blockade with immunotherapy leads to complete tumor regressions and enhances immune memory, highlighting the importance of targeting the PGE2 signaling pathway for potential cancer treatments.
View Article and Find Full Text PDF

In cancer, linking epigenetic alterations to drivers of transformation has been difficult, in part because DNA methylation analyses must capture epigenetic variability, which is central to tumour heterogeneity and tumour plasticity. Here, by conducting a comprehensive analysis, based on information theory, of differences in methylation stochasticity in samples from patients with paediatric acute lymphoblastic leukaemia (ALL), we show that ALL epigenomes are stochastic and marked by increased methylation entropy at specific regulatory regions and genes. By integrating DNA methylation and single-cell gene-expression data, we arrived at a relationship between methylation entropy and gene-expression variability, and found that epigenetic changes in ALL converge on a shared set of genes that overlap with genetic drivers involved in chromosomal translocations across the disease spectrum.

View Article and Find Full Text PDF

Epigenetic modifications confer stable transcriptional patterns in the brain, and both normal and abnormal brain function involve specialized brain regions. We examined DNA methylation by whole-genome bisulfite sequencing in neuronal and non-neuronal populations from four brain regions (anterior cingulate gyrus, hippocampus, prefrontal cortex, and nucleus accumbens) as well as chromatin accessibility in the latter two. We find pronounced differences in both CpG and non-CpG methylation (CG-DMRs and CH-DMRs) only in neuronal cells across brain regions.

View Article and Find Full Text PDF