Publications by authors named "Varduhi Knaryan"

Extra-nigral central nervous system sites have been found to be affected in Parkinson's disease (PD). In addition to substantia nigra, degeneration of spinal cord motor neurons may play a role in the motor symptoms of PD. To this end, hybrid rodent VSC 4.

View Article and Find Full Text PDF

Parkinson's disease (PD), a debilitating progressive degenerative movement disorder associated with loss of dopaminergic (DA) neurons in the substantia nigra (SN), afflicts approximately one million people in the U.S., including a significant number of Veterans.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, resulting in dopaminergic (DA) neuronal loss in the substantia nigra pars compacta (SNpc) and damage to the extranigral spinal cord neurons. Current therapies do not prevent the disease progression. Hence, developing efficacious therapeutic strategies for treatment of PD is of utmost importance.

View Article and Find Full Text PDF

Chronic alcohol consumption causes multifaceted damage to the central nervous system (CNS), underlying mechanisms of which are gradually being unraveled. In our previous studies, activation of calpain, a calcium-activated neutral protease has been found to cause detrimental alterations in spinal motor neurons following ethanol (EtOH) exposure in vitro. However, it is not known whether calpain plays a pivotal role in chronic EtOH exposure-induced structural damage to CNS in vivo.

View Article and Find Full Text PDF

Complex pathophysiology of Parkinson's disease involves multiple CNS cell types. Degeneration in spinal cord neurons alongside brain has been shown to be involved in Parkinson's disease and evidenced in experimental parkinsonism. However, the mechanisms of these degenerative pathways are not well understood.

View Article and Find Full Text PDF

While multiple molecular mechanisms contribute to midbrain nigrostriatal dopaminergic degeneration in Parkinson's disease (PD), the mechanism of damage in non-dopaminergic sites within the central nervous system, including the spinal cord, is not well-understood. Thus, to understand the comprehensive pathophysiology underlying this devastating disease, postmortem spinal cord tissue samples (cervical, thoracic, and lumbar segments) from patients with PD were analyzed compared to age-matched normal subjects or Alzheimer's disease for selective molecular markers of neurodegeneration and inflammation. Distal axonal degeneration, relative abundance of both sensory and motor neuron death, selective loss of ChAT(+) motoneurons, reactive astrogliosis, microgliosis, increased cycloxygenase-2 (Cox-2) expression, and infiltration of T cells were observed in spinal cord of PD patients compared to normal subjects.

View Article and Find Full Text PDF

Long-term exposure of ethanol (EtOH) alters the structure and function in brain and spinal cord. The present study addresses the mechanisms of EtOH-induced damaging effects on spinal motoneurons in vitro. Altered morphology and biochemical changes of such damage were demonstrated by in situ Wright staining and DNA ladder assay.

View Article and Find Full Text PDF

Sporadic Parkinson's disease (PD) is now interpreted as a complex nervous system disorder in which the projection neurons are predominantly damaged. Such an interpretation is based on mapping of Lewy body and Lewy neurite pathology. Symptoms of the human disease are much widespread, which span from pre-clinical non-motor symptoms and clinical motor symptoms to cognitive discrepancies often seen in advanced stages.

View Article and Find Full Text PDF

Multiple investigations in vivo have shown that melatonin (MEL) has a neuroprotective effect in the treatment of spinal cord injury (SCI). This study investigates the role of MEL as an intervening agent for ameliorating Ca(2+)-mediated events, including activation of calpain, following its administration to rats sustaining experimental SCI. Calpain, a Ca(2+)-dependent neutral protease, is known to be involved in the pathogenesis of SCI.

View Article and Find Full Text PDF

We examined neurodegeneration in spinal cord (SC) and role of such extra-nigral degeneration in MPTP-induced experimental parkinsonism in C57BL/6N mice. HPLC-photodiode array analysis confirmed presence of the active neurotoxin MPP+ in SC after single injection of MPTP (25 mg/kg, i.p.

View Article and Find Full Text PDF

Proline-rich-polypeptides (PRPs) isolated from bovine hypothalamus have been shown to render protection against neuronal injury of the brain and spinal cord. We examined two PRPs containing 15 and 10 amino acid residues (PRP-1 and PRP-4 synthetic polypeptide) for their effect, if any, on dopaminergic neuronal damage caused by the parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Effects of these PRPs on hydroxyl radical ((*)OH) generation in a Fenton-like reaction as well as from isolated mitochondria were monitored, employing a sensitive salicylate hydroxylation procedure.

View Article and Find Full Text PDF

Some of the proline-rich-polypeptides (PRPs) are shown to afford protection against spinal cord transection or crush syndrome-induced neurodegeneration in the brain. In the present study a synthetic proline-rich-polypeptide of human hypothalamus origin (h-PRP) has been examined for its potency to protect against dopaminergic neuronal damage caused by the parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Effect of h-PRP on hydroxyl radical (*OH) generation in a Fenton-like reaction was monitored, employing a sensitive salicylate hydroxylation procedure.

View Article and Find Full Text PDF

Background: The pathogenesis of crush syndrome is severe traumatic damage to the organism accompanied by shock and stress, acute toxemia, etc. Glutamate has been shown to be implicated in excitotoxic neural death in various clinical settings. The high affinity glutamate uptake process plays a key role in normal synaptic transmission.

View Article and Find Full Text PDF