Electroencephalogram (EEG) is widely used in basic and clinical neuroscience to explore neural states in various populations, and classifying these EEG recordings is a fundamental challenge. While machine learning shows promising results in classifying long multivariate time series, optimal prediction models and feature extraction methods for EEG classification remain elusive. Our study addressed the problem of EEG classification under the framework of brain age prediction, applying a deep learning model on EEG time series.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
April 2022
Machine learning (ML) algorithms play a vital role in the brain age estimation frameworks. The impact of regression algorithms on prediction accuracy in the brain age estimation frameworks have not been comprehensively evaluated. Here, we sought to assess the efficiency of different regression algorithms on brain age estimation.
View Article and Find Full Text PDF