Plasmon-driven molecular machines with ultrafast motion at the femtosecond scale are effective for the treatment of cancer and other diseases. It is recently shown that cyanine dyes act as molecular jackhammers (MJH) through vibronic (vibrational and electronic mode coupling) driven activation that causes the molecule to stretch longitudinally and axially through concerted whole molecule vibrations. However, the theoretical and experimental underpinnings of these plasmon-driven motions in molecules are difficult to assess.
View Article and Find Full Text PDFRecent experimental advances led to the development of DNA base editors (BEs) with single-nucleotide precision, which is critical for future progress in various scientific and technological fields. The molecular mechanisms of single-base discrimination, however, remain poorly understood. Using a recently developed stochastic approach, we theoretically investigated the dynamics of single-base editing.
View Article and Find Full Text PDFRecent experimental advances led to the development of DNA base editors (BEs) with a single-nucleotide precision that is critical for future progress in various scientific and technological fields. The molecular mechanisms of single-base discrimination, however, remain not well understood. Using a recently developed stochastic approach, we theoretically investigated the dynamics of single-base editing.
View Article and Find Full Text PDFNanoindentation simulations are performed for a Ni(111) bi-crystal, in which the grain boundary is coated by a graphene layer. We study both a weak and a strong interface, realized by a 30 ∘ and a 60 ∘ twist boundary, respectively, and compare our results for the composite also with those of an elemental Ni bi-crystal. We find hardening of the elemental Ni when a strong, i.
View Article and Find Full Text PDF