The efficient electrochemical conversion and storage devices can be boosted by the development of cost-effective and durable electrocatalysts. However, simultaneous in-depth understanding of the reaction mechanism is also required. Herein, we report the preparation, characterization, and electrochemical activities of bimetallic NiCo NPs and core-shell NiCo@NiCoO NPs stabilized on N-doped carbon nanotubes (NCNTs).
View Article and Find Full Text PDFCobalt and iron metal-based oxide catalysts play a significant role in energy devices. To unravel some interesting parameters, we have synthesized metal oxides of cobalt and iron ( FeO, CoO, CoFeO and CoFeO), and measured the effect of the valence band structure, morphology, size and defects in the nanoparticles towards the electrocatalytic hydrogen evolution reaction (HER), the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). The compositional variations in the cobalt and iron precursors significantly alter the particle size from 60 to <10 nm and simultaneously the shape of the particles (cubic and spherical).
View Article and Find Full Text PDFContiguous metal foams offer a multitude of advantages over conventional powders as supports for nanostructured heterogeneous catalysts; most critically a preformed 3-D porous framework ensuring full directional coverage of supported catalyst, and intrinsic ease of handling and recyclability. Nonetheless, metal foams remain comparatively underused in thermal catalysis compared to more conventional supports such as amorphous carbon, metal oxides, zeolites and more recently MOFs. Herein, we demonstrate a facile preparation of highly-reactive, robust, and easy to handle Ni foam-supported Cu-based metal catalysts.
View Article and Find Full Text PDFSubstituting the energy-uphill water oxidation half-cell with readily oxidizable urea-rich urine, a ground-breaking bridge is constructed, combining the energy-efficient hydrogen generation and environmental protection. Hence, designing a robust multifunctional electrocatalyst is desirable for widespread implementation of this waste to fuel technology. In this context, here, we report a simple tuning of the electrocatalytically favorable characteristics of NiCo-layered double hydroxide by introducing [MoS] in its interlayer space.
View Article and Find Full Text PDFEarth abundant, first row transition metals offer a cheap and sustainable alternative to the rare and precious metals. However, utilization of first row metals in catalysis requires harsh reaction conditions, suffers from limited activity, and fails to tolerate functional groups. Reported here is a highly efficient iron catalyzed hydroformylation of alkenes under mild conditions.
View Article and Find Full Text PDFPolyaniline (PANI) as a pseudocapacitive material has very high theoretical capacitance of 2000 F g. However, its practical capacitance has been limited by low electrochemical surface area (ESA) and unfavorable wettability toward aqueous electrolytes. This work deals with a strategy wherein the high ESA of PANI has been achieved by the induction of superhydrophilicity together with the alignment of PANI exclusively on the surface of carbon fibers as a thin layer to form a hybrid assembly.
View Article and Find Full Text PDFThe present work discloses how high-quality dispersion of fine particles of cobalt ferrite (CF) could be attained on nitrogen-doped reduced graphene oxide (CF/N-rGO) and how this material in association with a microporous carbon phase could deliver significantly enhanced activity toward electrochemical oxygen reduction reaction (ORR). Our study indicates that the microporous carbon phase plays a critical role in spatially separating the layers of CF/N-rGO and in creating a favorable atmosphere to ensure the seamless distribution of the reactants to the active sites located on CF/N-rGO. In terms of the ORR current density, the heat-treated hybrid catalyst at 150 °C (CF/N-rGO-150) is found to be clearly outperforming (7.
View Article and Find Full Text PDF