Foxtail millet husk (FMH) is a byproduct that is not suitable for consumption and is often discarded as solid waste. However, it can be used as a raw material to develop novel bioplastic composites that transform agro-based leftovers into value-added goods. Herein, new bioplastic composites were developed from poly(lactic acid), poly(butylene adipate-co-terephthalate) and FMH based granules by Injection Molding.
View Article and Find Full Text PDFIntroduction: The burden of hypertension is expected to double by 2025 and adherence to treatment has a key role in disease outcome. The World Health Organization defines adherence as the extent to which a person's behaviour of taking medication, following a diet and/or exceeding life-style changes, corresponds with the agreed recommendations of health care providers. The study tries to assess the level of adherence to medication and life-style modifications in hypertensive patients.
View Article and Find Full Text PDFMetal nanoparticles have been tremendously utilised, such as; antibacterial and anticancer agents. Although metal nanoparticles exhibits antibacterial and anticancer activity, but the drawback of toxicity on normal cells limits their clinical applications. Therefore, improving the bioactivity of hybrid nanomaterial (HNM) and minimizing toxicity is of paramount importance for biomedical applications.
View Article and Find Full Text PDFNanotechnology has become an exciting area of research in diverse fields, such as: healthcare, food, agriculture, cosmetics, paints, lubricants, fuel additives and other fields. This review is a novel effort to update the practioneers about the most current developments in the widespread use of green synthesized nanoparticles in medicine. Biosynthesis is widely preferred among different modes of nanoparticle synthesis since they do not require toxic chemical usage and they are environment-friendly.
View Article and Find Full Text PDFContext: During the challenging second wave of the COVID-19 pandemic, we encountered a most dreadful fungal infection in the form of COVID-associated mucormycosis (CAM), with a varied pattern of presentation from previous experience. Patients presented with simple fungal sinusitis or more complicated brain abscesses, and newer manifestations such as skull osteomyelitis. We report our findings and innovative treatment strategies used to manage this morbid condition.
View Article and Find Full Text PDFNatural biopolymers have been widely employed as biomaterial ink hydrogels for three-dimensional (3D) extrusion bioprinting in the preparation of the next generation of bioengineering materials for healthcare applications. Alginate is a linear anionic polysaccharide with favourable properties, such as: typical rheological (gelling, viscosifying, and stabilizing dispersions) characteristics, biodegradability and biocompatibility properties. However, in order to improve alginate applicability for practical biomaterial/bio ink for advanced medical applications, it is often modified and functionalized with several polymers and nanomaterials in order to obtain better printability of alginate-based biomaterial/bio ink hydrogels.
View Article and Find Full Text PDFMishandling of antibiotics often leads to the development of multiple drug resistance (MDR) among microbes, resulting in the failure of infection treatments and putting human health at great risk. As a response, unique nanomaterials with superior bioactivity must be developed to combat bacterial infections. Herein, CeO-based nanomaterials (NMs) were synthesized by employing cerium(iii) nitrate and selective alkaline ions.
View Article and Find Full Text PDFBiocidal activity and biocompatibility of nanomaterials (NMs) are crucial for healthcare applications. This study aims to develop biocidal hybrid NMs with high inhibition rates to control multidrug-resistant bacterial infection compared to conventional antibiotics. Herein, ZnO, chitosan-ZnO (CZnO) and alginate-ZnO (AZnO) NMs were synthesized via a simple one-pot technique.
View Article and Find Full Text PDFIn the present scenario, the development of eco-friendly multifunctional biocidal substances with low cost and high efficiency, has become the center of focus. This study is, focused on the synthesis of magnesium oxide (MgO) and chitosan-modified magnesium oxide (CMgO) nanoparticles (NPs), via a green precipitation process. In this process, leaves extract of Plumbago zeylanica L was, used as a nucleating agent.
View Article and Find Full Text PDFBiopolymer-based nanomaterials have been developed as antimicrobial and anticancer agents due to their advanced physical, chemical and biomedical characteristics. Herein, chitosan-copper oxide nanomaterial was, successfully synthesized by a green method. In this process, copper salt was nucleated with Psidium guajava leaves extract in order to form the nanomaterial in the chitosan network.
View Article and Find Full Text PDFCurrently, special emphasis is being given to the design and fabrication of antibacterial nanocomposite hydrogels for wound dressing applications. Herein, we report the synthesis and characterization of hydroxypropyl methylcellulose (HPMC) reinforced with HPMC capped copper nanoparticles (HCu NPs) based nanocomposite hydrogel films (NHFs). Spherical nanostructures of HCu NPs (∼40 nm) were achieved by facile precipitation technique using ascorbic acid as a nucleating agent and subsequently made their NHFs via solution casting method.
View Article and Find Full Text PDFAn environmentally friendly nanocomposite adsorbent composed of two renewable biomaterials, bacterial cellulose (BC) nanofibrils and hydroxyapatite (HA) nanocrystals, was synthetized by an in situ wet chemical precipitation technique, using clam shell biowaste as feedstock. HA nanocrystals embedded in an ultrafine BC network were confirmed and characterized trough different instrumental techniques (SEM, FTIR, XRD, EDS, surface charge and BET analysis), describing its nanostructure, chemical composition and thermal stability. The adsorptive removal of lead ions by the nanocomposite was investigated through batch experiments conducted under different pH, contact times and Pb(II) initial concentrations, proving that the process was highly favorable according to the Langmuir isotherm model (monolayer adsorption) with chemisorption as the main mechanism and kinetic data obeying a nonlinear pseudo-second order kinetic model.
View Article and Find Full Text PDFAs a result of the existence of drug-resistant bacteria and the attendant deficiency of innovative antibiotics, the therapeutic and the clinical sectors are, continually, in search of appropriate multifunctional nanomedicines. Herein, curcumin-chitosan-zinc oxide (CCZ) was successfully synthesized by a one-pot method. Transmission electron micrograph reveals that curcumin and chitosan were layered on a hexagonal ZnO and the particles are sized to ∼48 ±2nm.
View Article and Find Full Text PDFThe development of ideal wound dressing materials with excellent characteristics is currently a major demand in wound therapy. In recent years, carboxymethyl cellulose (CMC)-based wound dressing materials have been of immense attraction due to their noble properties, such as: biocompatibility, biodegradability, tissue resembling, low cost and non-toxic. It is used extensively, in a variety of applications in the biomedical and pharmaceutical fields.
View Article and Find Full Text PDFA few fruits have short post-harvest life due to high metabolic activity, relatively high water content vulnerability towards microbes and loss of weight during their storage. Carboxymethyl cellulose (CMC)-Guar gum-silver nanocomposite films (CG-AgNC) are developed to address these issues. The silver nanoparticles were generated in the CMC-Guar gum matrix through a reduction by Mentha leaves extract.
View Article and Find Full Text PDFAlginate biopolymer has been used in the design and development of several wound dressing materials in order to improve the efficiency of wound healing. Mainly, alginate improves the hydrophilic nature of wound dressing materials in order to create the required moist wound environment, remove wound exudate and increase the speed of skin recovery of the wound. In addition, alginate can easily cross-link with other organic and inorganic materials and they can promote wound healing in clinical applications.
View Article and Find Full Text PDFCopper nanoparticles were synthesized via precipitation technique using the pseudonatural cationic chitosan biopolymer as a stabilizing agent. The nanoparticles developed were successfully incorporated into the 1:1 ratio of blended chitosan: pluronic F127 polymer solution and made their nanocomposite hydrogels by solution casting method. The formed copper-based nanocomposite hydrogels were characterized by using Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy and transmission electron microscopy studies.
View Article and Find Full Text PDFHydroxyapatite (HA) was synthesized by wet chemical precipitation, using clam shell (CS) waste as feedstock. SEM and TEM observation of the produced hydroxyapatite revealed the presence of rod-shaped nanocrystals, while XRD and EDS analyses confirmed the characteristic patterns of hydroxyapatite molecules. This material was subsequently employed as a sorbent for heavy metal removal from aqueous solutions, both in batch and column equilibrium procedures.
View Article and Find Full Text PDFObjective: Strategies to improve traumatic brain injury (TBI) outcomes in India are ill defined. The objective of this study was to examine baseline prehospital (PH) factors associated with outcomes from the Andhra Pradesh Traumatic Brain Injury Project.
Methods: We conducted a prospective observational cohort study of adult patients with TBI admitted to the primary referral hospital.
Well-defined nanocomposite structures have received significant attention due to their superior combinatorial properties. Rational tuning of the core and shell of the nanostructure(s) can offer potent antibacterial activity. Such advanced core-shell nanocomposite methodologies allow not only the incorporation of antibacterial agents on the shell but also provide its stability and nurture antibacterial activity.
View Article and Find Full Text PDFChitosan (CH) capped inorganic nanomaterials have been considered as significant antibacterial materials in the clinical field. This work shows the synthesis of two new different antibacterial composite films as a result of the incorporation of CH capped copper oxide (CHCuO) and copper (CHCu) nanoparticles (NPs). Here, CHCuO and CHCu NPs were achieved by a facile chemical reduction of Cu ions using sodium hydroxide and ascorbic acid.
View Article and Find Full Text PDFHydrogels are composed of three-dimensional smart and/or hungry networks, which do not dissolve in water but swell considerably in an aqueous medium, demonstrating an extraordinary ability to absorb water into the reticulated structure. Such inherent feature is a subject of considerable scientific research interest which leads to a dominating path in extending their potential in hi-tech applications. Over the past decades, significant progress has been made in the field of hydrogels.
View Article and Find Full Text PDFIn this report, we investigated the swelling behavior and antibacterial property of nanosilver composite hydrogels made from tea with polyacrylamide via a free-radical polymerization and green process technique. This is probably for the first time; tea-based nano silver composite hydrogels were developed. The composite hydrogels comprise embedded nano silver particles in the tea hydrogel matrix via a green process with mint leaf extract.
View Article and Find Full Text PDF