Publications by authors named "Varadharajan Venkateshwari"

Background & Aims: In Crohn's disease, wrapping of mesenteric fat around the bowel wall, so-called "creeping fat," is highly associated with strictures. The strongest contributor to luminal narrowing in strictures is a thickening of the human intestinal muscularis propria (MP). We investigated creeping fat-derived factors and their effect on mechanisms of human intestinal MP smooth muscle cell (HIMC) hyperplasia.

View Article and Find Full Text PDF

Imidazole Propionate (ImP), a gut-derived metabolite from histidine, affects insulin signaling in mice and is elevated in type 2 diabetes (T2D). However, the source of histidine and the role of the gut microbiota remain unclear. We conducted an intervention study in mice and humans, comparing ImP kinetics in mice on a high-fat diet with varying histidine levels and antibiotics, and assessed ImP levels in healthy and T2D subjects with histidine supplementation.

View Article and Find Full Text PDF

Unlabelled: Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. The gut microbiome has been implicated in outcomes for HCC, and gut microbe-derived products may serve as potential non-invasive indices for early HCC detection. This study evaluated differences in plasma concentrations of gut microbiota-derived metabolites.

View Article and Find Full Text PDF
Article Synopsis
  • The Aster-C protein, located in the endoplasmic reticulum, is thought to play a role in cholesterol transport, but its exact function in cholesterol homeostasis is unclear.
  • In a study involving mice lacking Aster-C, researchers found no significant changes in cholesterol levels in feces, liver, or plasma when subjected to different dietary cholesterol levels.
  • Despite minimal effects on overall cholesterol metabolism, Aster-C deficiency led to slightly reduced bile acids and increased cortisol under low dietary cholesterol, indicating some role in hormone regulation rather than in cholesterol balance.
View Article and Find Full Text PDF

Recent genome-wide association studies (GWAS) have identified a link between single-nucleotide polymorphisms (SNPs) near the MBOAT7 gene and advanced liver diseases. Specifically, the common MBOAT7 variant (rs641738) associated with reduced MBOAT7 expression is implicated in non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis. However, the precise mechanism underlying MBOAT7-driven liver disease progression remains elusive.

View Article and Find Full Text PDF

Glioblastoma is the most lethal primary brain tumor with glioblastoma stem cells (GSCs) atop a cellular hierarchy. GSCs often reside in a perivascular niche, where they receive maintenance cues from endothelial cells, but the role of heterogeneous endothelial cell populations remains unresolved. Here, we show that lymphatic endothelial-like cells (LECs), while previously unrecognized in brain parenchyma, are present in glioblastomas and promote growth of CCR7-positive GSCs through CCL21 secretion.

View Article and Find Full Text PDF
Article Synopsis
  • Recent genome-wide association studies have linked specific SNPs near the MBOAT7 gene to increased risk for advanced liver diseases like NAFLD and ALD, especially in people with chronic hepatitis infections.
  • The MBOAT7 gene is crucial for producing a specific lipid, and a common variant (rs641738) lowers its expression, which exacerbates liver disease progression.
  • Research shows that deleting MBOAT7 in liver cells leads to more severe alcohol-induced liver damage, highlighting how alterations in lipid metabolism can affect liver health in heavy drinkers.
View Article and Find Full Text PDF

Background And Aims: Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the role of liver-specific CPT1a on hepatic lipid metabolism.

Approach And Results: Male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (60% kcal fat) for 15 weeks.

View Article and Find Full Text PDF

Ferroptosis is a form of regulated cell death with roles in degenerative diseases and cancer. Excessive iron-catalyzed peroxidation of membrane phospholipids, especially those containing the polyunsaturated fatty acid arachidonic acid (AA), is central in driving ferroptosis. Here, we reveal that an understudied Golgi-resident scaffold protein, MMD, promotes susceptibility to ferroptosis in ovarian and renal carcinoma cells in an ACSL4- and MBOAT7-dependent manner.

View Article and Find Full Text PDF

Background And Aims: Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the impact by which liver-specific CPT1a deletion impacts hepatic lipid metabolism.

Approach And Results: Six-to-eight-week old male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (HFD; 60% kcal fat) for 15 weeks.

View Article and Find Full Text PDF

The gut microbiome is complex, raising questions about the role of individual strains in the community. Here, we address this question by constructing variants of a complex defined community in which we eliminate strains that occupy the bile acid 7α-dehydroxylation niche. Omitting Clostridium scindens (Cs) and Clostridium hylemonae (Ch) eliminates secondary bile acid production and reshapes the community in a highly specific manner: eight strains change in relative abundance by >100-fold.

View Article and Find Full Text PDF

We previously demonstrated that antisense oligonucleotide-mediated knockdown of Mboat7, the gene encoding membrane bound O-acyltransferase 7, in the liver and adipose tissue of mice promoted high fat diet-induced hepatic steatosis, hyperinsulinemia, and systemic insulin resistance. Thereafter, other groups showed that hepatocyte-specific genetic deletion of Mboat7 promoted striking fatty liver and NAFLD progression in mice but does not alter insulin sensitivity, suggesting the potential for cell autonomous roles. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance.

View Article and Find Full Text PDF
Article Synopsis
  • Eating fruits and vegetables is good for heart health, but scientists aren't totally sure how it works yet.
  • Researchers found that a special part of flavonoids, called 4-HPAA, helps reduce health problems caused by a high-fat diet.
  • Only a tiny number of people have the right bacteria in their guts to make 4-HPAA from flavonoids, which shows that not everyone can get these health benefits from their diet.
View Article and Find Full Text PDF

Advanced liver diseases account for approximately 2 million deaths annually worldwide. Roughly, half of liver disease-associated deaths arise from complications of cirrhosis and the other half driven by viral hepatitis and hepatocellular carcinoma. Unfortunately, the development of therapeutic strategies to treat subjects with advanced liver disease has been hampered by a lack of mechanistic understanding of liver disease progression and a lack of human-relevant animal models.

View Article and Find Full Text PDF

There is mounting evidence that microbes residing in the human intestine contribute to diverse alcohol-associated liver diseases (ALD) including the most deadly form known as alcohol-associated hepatitis (AH). However, mechanisms by which gut microbes synergize with excessive alcohol intake to promote liver injury are poorly understood. Furthermore, whether drugs that selectively target gut microbial metabolism can improve ALD has never been tested.

View Article and Find Full Text PDF

Cellular cholesterol is regulated by at least two transcriptional mechanisms involving sterol-regulatory-element-binding proteins (SREBPs) and liver X receptors (LXRs). Although SREBP and LXR pathways are the predominant mechanisms that sense cholesterol in the endoplasmic reticulum and nucleus to alter sterol-regulated gene expression, evidence suggests cholesterol in plasma membrane can be sensed by proteins in the Hedgehog (Hh) pathway which regulate organ self-renewal and are a morphogenic driver during embryonic development. Cholesterol interacts with the G-protein-coupled receptor Smoothened (Smo), which impacts downstream Hh signaling.

View Article and Find Full Text PDF

Objective: The most common kidney cancer, clear cell renal cell carcinoma (ccRCC), is closely associated with obesity. The "clear cell" variant of RCC gets its name from the large lipid droplets that accumulate in the tumor cells. Although renal lipid metabolism is altered in ccRCC, the mechanisms and lipids driving this are not well understood.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research has found a genetic variant (rs641738) linked to higher risk of non-alcoholic fatty liver disease (NAFLD) and related liver conditions in individuals with viral hepatitis.
  • The study indicates that losing the function of a specific gene (MBOAT7) increases liver disease progression, which was previously suggested but not formally tested.
  • Findings in mice reveal that loss of MBOAT7 leads to the build-up of certain lipids (lysophosphatidylinositol) that cause liver inflammation and fibrosis, highlighting MBOAT7's crucial role in preventing NAFLD.
View Article and Find Full Text PDF