Background: Persistent accumulation and hindered clearance of toxins from tissues over time may promote the development and exacerbation of several diseases. Hepatic metabolic detoxification is a key physiological process responsible for the clearance of toxic substances from the body. A healthy diet with nutritional dietary supplementation may support metabolic detoxification and help mitigate the negative effects of toxin burden.
View Article and Find Full Text PDFNordihydroguaiaretic acid (NDGA), a dicatechol and phytochemical polyphenolic antioxidant and an established inhibitor of human arachidonic acid (AA) 5-lipoxygenase (LOX) and 15-LOX, is widely used to ascertain the role of LOXs in vascular endothelial cell (EC) function. As the modulatory effect of NDGA on phospholipase D (PLD), an important lipid signaling enzyme in ECs, thus far has not been reported, here we have investigated the modulation of PLD activity and its regulation by NDGA in the bovine pulmonary artery ECs (BPAECs). NDGA induced the activation of PLD (phosphatidic acid formation) in cells in a dose- and time-dependent fashion that was significantly attenuated by iron chelator and antioxidants.
View Article and Find Full Text PDFProstaglandins Leukot Essent Fatty Acids
January 2022
Polyunsaturated fatty acids (PUFAs) are long chain fatty acids that are characterized by the presence of more than one double bond. These include fatty acids such as ꞷ-3-α-linolenic acid (ALA) and ꞷ-6 -linoleic acid (LA) which can only be obtained from dietary sources and are therefore termed essential fatty acids. They contain the building blocks for dihomo-γ-linolenic acid and arachidonic acid in the ꞷ-6 family as well as eicosapentaenoic acid and docosahexaenoic acid in the ꞷ-3 family.
View Article and Find Full Text PDFThe endocannabinoid system (ECS) consists of endogenous cannabinoids, their receptors, and metabolic enzymes that play a critical homeostatic role in modulating polyunsaturated omega fatty acid (PUFA) signaling to maintain a balanced inflammatory and redox state. Whole food-based diets and dietary interventions linked to PUFAs of animal (fish, calamari, krill) or plant (hemp, flax, walnut, algae) origin, as well as full-spectrum hemp oils, are increasingly used to support the ECS tone, promote healthy metabolism, improve risk factors associated with cardiovascular disorders, encourage brain health and emotional well-being, and ameliorate inflammation. While hemp cannabinoids of THC and CBD groups show distinct but complementary actions through a variety of cannabinoid (CB1 and CB2), adenosine (A2A), and vanilloid (TRPV1) receptors, they also modulate PUFA metabolism within a wide variety of specialized lipid mediators that promote or resolve inflammation and oxidative stress.
View Article and Find Full Text PDFCardiac hypertrophy is the underlying cause of heart failure and is characterized by excessive oxidative stress leading to collagen deposition. Therefore, understanding the signalling mechanisms involved in excessive extracellular matrix deposition is necessary to prevent cardiac remodelling and heart failure. In this study, we hypothesized that hesperetin, a flavanone that elicits the activation of Nrf2 signalling and thereby suppresses oxidative stress, mediated pathological cardiac hypertrophy progression.
View Article and Find Full Text PDFProteomics monitoring of an elite adventure athlete (age 33 years) was conducted over a 28-week period that culminated in the successful, solo, unassisted, and unsupported two month trek across the Antarctica (1500 km). Training distress was monitored weekly using a 19-item, validated training distress scale (TDS). Weekly dried blood spot (DBS) specimens were collected via fingerprick blood drops onto standard blood spot cards.
View Article and Find Full Text PDFA-F Betafood is a whole food-based health product. The product contains phytonutrients and bioactives with antioxidant properties that may support gallbladder and liver function. Herein, we investigated the efficacy of A-F Betafood on gallbladder and liver function.
View Article and Find Full Text PDFIn vascular diseases, including hypertension and atherosclerosis, vascular endothelial dysfunction (VED) occurs secondary to altered function of endothelial nitric oxide synthase (eNOS). A novel redox regulated pathway was identified through which eNOS is uncoupled due to -glutathionylation of critical cysteine residues, resulting in superoxide free radical formation instead of the vasodilator molecule, nitric oxide. In addition, the redox sensitive cofactor tetrahydrobiopterin, BH, is also essential for eNOS coupling.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
October 2017
We have previously reported that oral biofilms in clinically healthy smokers are pathogen-rich, and that this enrichment occurs within 24 h of biofilm formation. The present investigation aimed to identify a mechanism by which smoking creates this altered community structure. By combining in vitro microbial-mucosal interface models of commensal (consisting of and and pathogen-rich (comprising and , and communities with metatranscriptomics, targeted proteomics and fluorescent microscopy, we demonstrate that smoke exposure significantly downregulates essential metabolic functions within commensal biofilms, while significantly increasing expression of virulence genes, notably lipopolysaccharide (LPS), flagella and capsule synthesis.
View Article and Find Full Text PDFBackground: Obstructive sleep apnea (OSA) is associated with vascular endothelial dysfunction (VED) in otherwise healthy patients. The role of renin-angiotensin system (RAS) in the OSA induced VED is not well understood.
Methods: Recently diagnosed OSA patients with very low cardiovascular disease (CVD) risk (Framingham score <5%) were studied at diagnosis and after 12 weeks of verified continuous positive airway pressure (CPAP) therapy.
The identity of the specific nitric oxide dioxygenase (NOD) that serves as the main in vivo regulator of O-dependent NO degradation in smooth muscle remains elusive. Cytoglobin (Cygb) is a recently discovered globin expressed in fibroblasts and smooth muscle cells with unknown function. Cygb, coupled with a cellular reducing system, efficiently regulates the rate of NO consumption by metabolizing NO in an O-dependent manner with decreased NO consumption in physiological hypoxia.
View Article and Find Full Text PDFBackground: Despite increased secondary cardiovascular events in patients with ischemic cardiomyopathy (ICM), the expression of innate cardiac protective molecules in the hearts of patients with ICM is incompletely characterized. Therefore, we used a nonbiased RNAseq approach to determine whether differences in cardiac protective molecules occur with ICM.
Methods And Results: RNAseq analysis of human control and ICM left ventricular samples demonstrated a significant decrease in expression with ICM.
In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2015
A chemiluminescent method is proposed for quantitation of NO generation in cell cultures. The method is based on activation of soluble guanylyl cyclase by NO. The product of the guanylyl cyclase reaction, pyrophosphate, is converted to ATP by ATP sulfurylase and ATP is detected in a luciferin-luciferase system.
View Article and Find Full Text PDFTetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthase (NOS), and reduced BH4 availability leads to endothelial NOS (eNOS) uncoupling and increased reactive oxygen species (ROS) generation. Questions remain regarding the functional state of eNOS and role of BH4 availability in the process of in vivo myocardial ischemia-reperfusion (I/R) injury. Rats were subjected to 60min of in vivo left coronary artery occlusion and varying periods of reperfusion with or without pre-ischemic liposomal BH4 supplementation (1mg/kg, iv).
View Article and Find Full Text PDFSaphenous veins used as arterial grafts are exposed to arterial levels of oxygen partial pressure (pO2), which are much greater than what they experience in their native environment. The object of this study is to determine the impact of exposing human saphenous veins to arterial pO2. Saphenous veins and left internal mammary arteries from consenting patients undergoing coronary artery bypass grafting were cultured ex vivo for 2 weeks in the presence of arterial or venous pO2 using an established organ culture model.
View Article and Find Full Text PDFTumor hypoxia, a feature of many solid tumors including ovarian cancer, is associated with resistance to therapies. We previously demonstrated that hypoxic exposure results in increased expression of phosphorylated signal transducer and activator of transcription 3 (pSTAT3). We hypothesized the activation of STAT3 could lead to chemotherapeutic resistance in ovarian cancer cells in hypoxic conditions.
View Article and Find Full Text PDFThe mechanism of vascular endothelial dysfunction (VED) and cardiovascular disease in obstructive sleep apnea (OSA) is unknown. We performed a comprehensive evaluation of endothelial nitric oxide synthase (eNOS) function directly in the microcirculatory endothelial tissue of OSA patients who have very low cardiovascular risk status. Nineteen OSA patients underwent gluteal biopsies before, and after effective treatment of OSA.
View Article and Find Full Text PDFBackground: The core region of a myocardial infarction is notoriously unsupportive of cardiomyocyte survival. However, there has been less investigation of the potentially beneficial spontaneous recruitment of endogenous bone marrow progenitor cells (BMPCs) within infarcted areas. In the current study we examined the role of tissue oxygenation and derived toxic species in the control of BMPC engraftment during postinfarction heart remodeling.
View Article and Find Full Text PDFBackground And Purpose: Nitric oxide (NO) derived from eNOS is mostly responsible for the maintenance of vascular homeostasis and its decreased bioavailability is characteristic of reactive oxygen species (ROS)-induced endothelial dysfunction (ED). Because 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), a commonly used spin trap, can control intracellular nitroso-redox balance by scavenging ROS and donating NO, it was employed as a cardioprotective agent against ED but the mechanism of its protection is still not clear. This study elucidated the mechanism of protection by DMPO against SIN-1-induced oxidative injury to bovine aortic endothelial cells (BAEC).
View Article and Find Full Text PDFAims: The role of endothelial nitric oxide synthase (eNOS)/NO signalling is well documented in late ischaemic preconditioning (IPC); however, the role of eNOS and its activation in early IPC remains controversial. This study investigates the role of eNOS in early IPC and the signalling pathways and molecular interactions that regulate eNOS activation during early IPC.
Methods And Results: Rat hearts were subjected to 30-min global ischaemia and reperfusion (I/R) with or without IPC (three cycles 5-min I and 5-min R) in the presence or absence of the NOS inhibitor l-NAME, phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (LY), and protein kinase A (PKA) inhibitor H89 during IPC induction or prior endothelial permeablization.
Endothelial nitric oxide synthase (eNOS) is critical in the regulation of vascular function, and can generate both nitric oxide (NO) and superoxide (O(2)(•-)), which are key mediators of cellular signalling. In the presence of Ca(2+)/calmodulin, eNOS produces NO, endothelial-derived relaxing factor, from l-arginine (l-Arg) by means of electron transfer from NADPH through a flavin containing reductase domain to oxygen bound at the haem of an oxygenase domain, which also contains binding sites for tetrahydrobiopterin (BH(4)) and l-Arg. In the absence of BH(4), NO synthesis is abrogated and instead O(2)(•-) is generated.
View Article and Find Full Text PDFHuman saphenous veins (HSVs) are widely used for bypass grafts despite their relatively low long-term patency. To evaluate the role of reactive oxygen species (ROS) signaling in intima hyperplasia (IH), an early stage pathology of vein-graft disease, and to explore the potential therapeutic effects of up-regulating endogenous antioxidant enzymes, we studied segments of HSV cultured ex vivo in an established ex vivo model of HSV IH. Results showed that HSV cultured ex vivo exhibit an ~3-fold increase in proliferation and ~3.
View Article and Find Full Text PDFAntioxid Redox Signal
March 2011
Inheritable missense mutations in small molecular weight heat-shock proteins (HSP) with chaperone-like properties promote self-oligomerization, protein aggregation, and pathologic states such as hypertrophic cardiomyopathy in humans. We recently described that human mutant αB-crystallin (hR120GCryAB) overexpression that caused protein aggregation cardiomyopathy (PAC) was genetically linked to dysregulation of the antioxidant system and reductive stress (RS) in mice. However, the molecular mechanism that induces RS remains only partially understood.
View Article and Find Full Text PDF