In the recent years, the number of Point-Of-Care-Tests (POCTs) available for clinical diagnostic has steadily increased. POCTs provide a near-patient testing with the potential to generate a result quickly so that appropriate treatment can be implemented, leading to improved clinical outcomes compared to traditional laboratory testing. Technological advances, such as miniaturization of sensors and improved instrumentation, have revolutionized POCTs, enabling the development of smaller and more accurate devices.
View Article and Find Full Text PDFIn this study, we present an all-solid-state electrochromic device (ECD) that eliminates the need for hard-to-obtain materials and conventional liquid/gel electrolytes. Using a cost-effective and industrially scalable spray coating technique, we developed an ECD containing a layer of zinc oxide nanorods (ZnO) synthesized via a simple solochemical route. The device configuration includes a preformed Al-coated glass substrate, acting as a counter electrode, within a glass/Al/ZnO/PEDOT:PSS architecture.
View Article and Find Full Text PDFLiquid biopsy is expected to become widespread in the coming years thanks to point of care devices, which can include label-free biosensors. The surface functionalization of biosensors is a crucial aspect that influences their overall performance, resulting in the accurate, sensitive, and specific detection of target molecules. Here, the surface of a microring resonator (MRR)-based biosensor was functionalized for the detection of protein biomarkers.
View Article and Find Full Text PDFHazardous substances produced by anthropic activities threaten human health and the green environment. Gas sensors, especially those based on metal oxides, are widely used to monitor toxic gases with low cost and efficient performance. In this study, electron beam lithography with two-step exposure was used to minimize the geometries of the gas sensor hotplate to a submicron size in order to reduce the power consumption, reaching 100 °C with 0.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2023
A successful immunosensor is characterized by a proper antibody immobilization and orientation in order to enhance the antigen recognition. In this work, a thorough characterization of the antibody functionalized gold surface is performed to set up the best conditions to implement in an optical platform for the detection of Brucella sp. Two different strategies are evaluated, based on a random immobilization and on an oriented one: a direct antibody immobilization on carboxylic mixed polyethylene (PEG) self-assembled monolayer (SAM) or only carboxylic PEG SAM interface is compared to an oriented immobilization on a layer of protein G on the same PEG SAM interfaces.
View Article and Find Full Text PDFIn this work, Fe2O3 was investigated as a doping agent for poly(methyl methacrylate) (PMMA) in order to enhance the plasmonic effect in sensors based on D-shaped plastic optical fibers (POFs). The doping procedure consists of immerging a premanufactured POF sensor chip in an iron (III) solution, avoiding repolymerization and its related disadvantages. After treatment, a sputtering process was used to deposit a gold nanofilm on the doped PMMA in order to obtain the surface plasmon resonance (SPR).
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2023
Carbon capture, storage, and utilization have become familiar terms when discussing climate change mitigation actions. Such endeavors demand the availability of smart and inexpensive devices for CO monitoring. To date, CO detection relies on optical properties and there is a lack of devices based on solid-state gas sensors, which can be miniaturized and easily made compatible with Internet of Things platforms.
View Article and Find Full Text PDFPlant height is an important agronomic trait with a significant impact on grain yield, as demonstrated by the positive effect of the () dwarfing alleles () on lodging and harvest index in the "Green Revolution" wheat varieties. However, these gibberellic acid (GA)-insensitive alleles also reduce coleoptile length, biomass production, and yield potential in some environments, triggering the search for alternative GA-sensitive dwarfing genes. Here we report the identification, validation, and characterization of the gene underlying the GA-sensitive dwarfing locus in wheat.
View Article and Find Full Text PDFThe presence of residual antibiotics in food is increasingly emerging as a worrying risk for human health both for the possible direct toxicity and for the development of antibiotic-resistant bacteria. In the context of food safety, new methods based on microfluidics could offer better performance, providing improved rapidity, portability and sustainability, being more cost effective and easy to use. Here, a microfluidic method based on the use of magnetic microbeads specifically functionalized and inserted in polymeric microchambers is proposed.
View Article and Find Full Text PDFFusarium Head Blight (FHB) is a devastating disease that affects the grain yield and quality of essential crops such as wheat. In the last years, some Fusarium species have acquired particular importance as Fusarium poae. However, studies to evaluate F.
View Article and Find Full Text PDFBackground: Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of the wheat crop.
View Article and Find Full Text PDFHighly porous Germanium surfaces with uniformly distributed columnar nanovoid structures are fabricated over a large area (wafer scale) by large fluence Snirradiation through a thin silicon nitride layer. The latter represents a one-step highly reproducible approach with no material loss to strongly increase photon harvesting into a semiconductor active layer by exploiting the moth-eye antireflection effect. The ion implantation through the nitride cap layer allows fabricating porous nanostructures with high aspect ratio, which can be tailored by varying ion fluence.
View Article and Find Full Text PDFBackground: Plant miRNAs are a class of small non-coding RNAs that can repress gene expression at the post-transcriptional level by targeting RNA degradation or promoting translational repression. There is increasing evidence that some miRNAs can derive from a group of non-autonomous class II transposable elements called Miniature Inverted-repeat Transposable Elements (MITEs).
Results: We used public small RNA and degradome libraries from Triticum aestivum to screen for microRNAs production and predict their cleavage target sites.
Hydrogen is largely adopted in industrial processes and is one of the leading options for storing renewable energy. Due to its high explosivity, detection of H has become essential for safety in industries, storage, and transportation. This work aims to design a sensing film for high-sensitivity H detection.
View Article and Find Full Text PDFAntibiotics are widely used to both prevent and treat bacterial diseases as well as promote animal growth. This massive use leads to the presence of residual antibiotics in food with severe consequences for human health. Limitations and regulations on the tolerated amount of antibiotics in food have been introduced and analytical methods have been developed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2021
In the rapidly emerging field of layered two-dimensional functional materials, black phosphorus, the P-counterpart of graphene, is a potential candidate for various applications, e.g., nanoscale optoelectronics, rechargeable ion batteries, electrocatalysts, thermoelectrics, solar cells, and sensors.
View Article and Find Full Text PDFBackground: In breeding programs, the selection of cultivars with the highest yield potential consisted in the selection of the yield per se, which resulted in cultivars with higher grains per spike (GN) and occasionally increased grain weight (GW) (main numerical components of the yield). In this study, quantitative trait loci (QTL) for GW, GN and spike fertility traits related to GN determination were mapped using two doubled haploid (DH) populations (Baguette Premium 11 × BioINTA 2002 and Baguette 19 × BioINTA 2002).
Results: In total 305 QTL were identified for 14 traits, out of which 12 QTL were identified in more than three environments and explained more than 10% of the phenotypic variation in at least one environment.
A specific aptameric sequence has been immobilized on short polyethyleneglycol (PEG) interface on gold nano-film deposited on a D-shaped plastic optical fiber (POFs) probe, and the protein binding has been monitored exploiting the very sensitive surface plasmon resonance (SPR) phenomenon. The receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein has been specifically used to develop an aptasensor. Surface analysis techniques coupled to fluorescence microscopy and plasmonic analysis have been utilized to characterize the biointerface.
View Article and Find Full Text PDFPostoperative pancreatic fistula (POPF), the major driver of morbidity and mortality following pancreatectomy, is caused by an abnormal communication between the pancreatic ductal epithelium and another epithelial surface containing pancreas-derived, enzyme-rich fluid. There is a strong correlation between the amylase content in surgically-placed drains early in the postoperative course and the development of POPF. A simple and cheap method to determine the amylase content from the drain effluent has been eagerly advocated.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
August 2021
The neuroscience field has increased enormously over the last decades, achieving the possible real application of neuronal cultures not only for reproducing neural architectures resembling in vivo tissues, but also for the development of functional devices. In this context, surface patterning for cell confinement is crucial, and new active materials together with new protocols for preparing substrates suitable for confining cells, guiding their processes in the desired configuration are extremely appreciated. Here, TiO sol-gel derived films were selected as proof-of-concept materials to grow neurons in suitable confined configurations, taking advantage of the biocompatible properties of modified TiO substrates.
View Article and Find Full Text PDFFruiting efficiency (FE, grains per g of spike dry weight at anthesis) was proposed as a promising spike trait to improve wheat yield potential, based on its functional relationship with grain number determination and the evidence of trait variability in elite germplasm. During the last few years, we have witnessed great advances in the understanding of the physiological and genetic basis of this trait. The present review summarizes the recent heritability estimations and the genetic gains obtained when fruiting efficiency was measured at maturity (FEm, grains per g of chaff) and used as selection criterion.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are membranous structures that cells massively release in extracellular fluids. EVs are cargo of cellular components such as lipids, proteins, and nucleic acids that can work as a formidable source in liquid biopsy studies searching for disease biomarkers. We recently demonstrated that nickel-based isolation (NBI) is a valuable method for fast, efficient, and easy recovery of heterogeneous EVs from biological fluids.
View Article and Find Full Text PDF