Publications by authors named "Vanya Darakchieva"

Group-III nitrides have transformed solid-state lighting and are strategically positioned to revolutionize high-power and high-frequency electronics. To drive this development forward, a deep understanding of fundamental material properties, such as charge carrier behavior, is essential and can also unveil new and unforeseen applications. This underscores the necessity for novel characterization tools to study group-III nitride materials and devices.

View Article and Find Full Text PDF

We have investigated the optical properties of heterostructured InGaN platelets aiming at red emission, intended for use as nano-scaled light-emitting diodes. The focus is on the presence of non-radiative emission in the form of dark line defects. We have performed the study using hyperspectral cathodoluminescence imaging.

View Article and Find Full Text PDF

Polar dielectrics are key materials of interest for infrared (IR) nanophotonic applications due to their ability to host phonon-polaritons that allow for low-loss, subdiffractional control of light. The properties of phonon-polaritons are limited by the characteristics of optical phonons, which are nominally fixed for most "bulk" materials. Superlattices composed of alternating atomically thin materials offer control over crystal anisotropy through changes in composition, optical phonon confinement, and the emergence of new modes.

View Article and Find Full Text PDF

Terahertz (THz) technologies provide opportunities ranging from calibration targets for satellites and telescopes to communication devices and biomedical imaging systems. A main component will be broadband THz absorbers with switchability. However, optically switchable materials in THz are scarce and their modulation is mostly available at narrow bandwidths.

View Article and Find Full Text PDF

Structural defects in Mg-doped GaN were analyzed using high-resolution scanning transmission electron microscopy combined with electron energy loss spectroscopy. The defects, in the shape of inverted pyramids, appear at high concentrations of incorporated Mg, which also lead to a reduction in free-hole concentration in Mg doped GaN. Detailed analysis pinpoints the arrangement of atoms in and around the defects and verify the presence of a well-defined layer of Mg at all facets, including the inclined facets.

View Article and Find Full Text PDF

Nanostructures of conventional metals offer manipulation of light at the nanoscale but are largely limited to static behavior due to fixed material properties. To develop the next frontier of dynamic nano-optics and metasurfaces, this study utilizes the redox-tunable optical properties of conducting polymers, as recently shown to be capable of sustaining plasmons in their most conducting oxidized state. Electrically tunable conducting polymer nano-optical antennas are presented, using nanodisks of poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf) as a model system.

View Article and Find Full Text PDF

Precise manipulation of light-matter interactions has enabled a wide variety of approaches to create bright and vivid structural colors. Techniques utilizing photonic crystals, Fabry-Pérot cavities, plasmonics, or high-refractive-index dielectric metasurfaces have been studied for applications ranging from optical coatings to reflective displays. However, complicated fabrication procedures for sub-wavelength nanostructures, limited active areas, and inherent absence of tunability of these approaches impede their further development toward flexible, large-scale, and switchable devices compatible with facile and cost-effective production.

View Article and Find Full Text PDF

Presented here is the development and demonstration of a tunable cavity-enhanced terahertz (THz) frequency-domain optical Hall effect (OHE) technique. The cavity consists of at least one fixed and one tunable Fabry-Pérot resonator. The approach is suitable for the enhancement of the optical signatures produced by the OHE in semi-transparent conductive layer structures with plane parallel interfaces.

View Article and Find Full Text PDF

Being able to dynamically shape light at the nanoscale is one of the ultimate goals in nano-optics. Resonant light-matter interaction can be achieved using conventional plasmonics based on metal nanostructures, but their tunability is highly limited due to a fixed permittivity. Materials with switchable states and methods for dynamic control of light-matter interaction at the nanoscale are therefore desired.

View Article and Find Full Text PDF

Two-dimensional (2D) transition metal carbides and/or nitrides (MXenes) are a new class of 2D materials, with extensive opportunities for property tailoring due to the numerous possibilities for varying chemistries and surface terminations. Here, TiAlC and NbAlC MAX phase epitaxial thin films were deposited on sapphire substrates by physical vapor deposition. The films were then etched in LiF/HCl solutions, yielding Li-intercalated, 2D TiCT and NbCT films, whose terminations, transport and optical properties were characterized.

View Article and Find Full Text PDF

Global warming caused by burning of fossil fuels is indisputably one of mankind's greatest challenges in the 21st century. To reduce the ever-increasing CO emissions released into the atmosphere, dry solid adsorbents with large surface-to-volume ratio such as carbonaceous materials, zeolites, and metal-organic frameworks have emerged as promising material candidates for capturing CO . However, challenges remain because of limited CO /N selectivity and long-term stability.

View Article and Find Full Text PDF

The exploration of 2D solids is one of our time's generators of materials discoveries. A recent addition to the 2D world is MXenes that possses a rich chemistry due to the large parent family of MAX phases. Recently, a new type of atomic laminated phases (coined i-MAX) is reported, in which two different transition metal atoms are ordered in the basal planes.

View Article and Find Full Text PDF

Unraveling the doping-related charge carrier scattering mechanisms in two-dimensional materials such as graphene is vital for limiting parasitic electrical conductivity losses in future electronic applications. While electric field doping is well understood, assessment of mobility and density as a function of chemical doping remained a challenge thus far. In this work, we investigate the effects of cyclically exposing epitaxial graphene to controlled inert gases and ambient humidity conditions, while measuring the Lorentz force-induced birefringence in graphene at Terahertz frequencies in magnetic fields.

View Article and Find Full Text PDF

The optical Hall effect is a physical phenomenon that describes the occurrence of magnetic-field-induced dielectric displacement at optical wavelengths, transverse and longitudinal to the incident electric field, and analogous to the static electrical Hall effect. The electrical Hall effect and certain cases of the optical Hall effect observations can be explained by extensions of the classic Drude model for the transport of electrons in metals. The optical Hall effect is most useful for characterization of electrical properties in semiconductors.

View Article and Find Full Text PDF

Direct growth of graphene on Co(3)O(4)(111) at 1000 K was achieved by molecular beam epitaxy from a graphite source. Auger spectroscopy shows a characteristic sp(2) carbon lineshape, at average carbon coverages from 0.4 to 3 ML.

View Article and Find Full Text PDF