Absorption of inhaled compounds can occur from multiple sites based on upper and lower respiratory tract deposition, and clearance mechanisms leading to differential local and systemic pharmacokinetics. Deriving inhaled aerosol dosimetry and local tissue concentrations for nose-only exposure in rodents and inhaled products in humans is challenging. In this study we use inhaled nicotine as an example to identify regional respiratory tract deposition, absorption fractions, and their contribution toward systemic pharmacokinetics in rodents and humans.
View Article and Find Full Text PDFMost flavors used in e-liquids are generally recognized as safe for oral consumption, but their potential effects when inhaled are not well characterized. In vivo inhalation studies of flavor ingredients in e-liquids are scarce. A structure-based grouping approach was used to select 38 flavor group representatives (FGR) on the basis of known and in silico-predicted toxicological data.
View Article and Find Full Text PDFMany flavor ingredients are often used in potentially reduced-risk tobacco products (such as e-vapor products). Although most are "generally recognized as safe (GRAS)" when used in food, there is limited information available on their long-term health effects when delivered by inhalation. While obtaining route-of-exposure-specific toxicological data on flavor ingredients is critical to product evaluation, the large number of individual flavor ingredients available and their potential combinations render classical toxicological assessment approaches impractical, as they may require years of preclinical investigations and thousands of laboratory animals.
View Article and Find Full Text PDFThe capillary aerosol generator (CAG) is operated with the principal of thermal liquid evaporation through heating of e-liquid in the initial phase, followed by nucleation and condensation regulated through a mixture of airflow to generate aerosols, such as in an electronic cigarette (EC). The CAG is particularly useful in generating aerosols of large volumes in a continuous manner, for instances such as in vivo inhalation toxicology studies, where usage of ECs is not feasible. The thermal effects of generating aerosol from the CAG are similar in terms of temperature applied in an EC, thus allowing investigators to assess the vapors of e-liquids at scale and reproducibility.
View Article and Find Full Text PDFMice, especially A/J mice, have been widely employed to elucidate the underlying mechanisms of lung tumor formation and progression and to derive human-relevant modes of action. Cigarette smoke (CS) exposure induces tumors in the lungs; but, non-exposed A/J mice will also develop lung tumors spontaneously with age, which raises the question of discriminating CS-related lung tumors from spontaneous ones. However, the challenge is that spontaneous tumors are histologically indistinguishable from the tumors occurring in CS-exposed mice.
View Article and Find Full Text PDFCigarette smoking causes adverse health effects that might occur shortly after smoking initiation and lead to the development of inflammation and cardiorespiratory disease. Emerging studies have demonstrated the role of the intestinal microbiome in disease pathogenesis. The intestinal microbiome is susceptible to the influence of environmental factors such as smoking, and recent studies have indicated microbiome changes in smokers.
View Article and Find Full Text PDFCigarette smoking is the major cause of chronic obstructive pulmonary disease. Considerable attention has been paid to the reduced harm potential of nicotine-containing inhalable products such as electronic cigarettes (e-cigarettes). We investigated the effects of mainstream cigarette smoke (CS) and e-vapor aerosols (containing nicotine and flavor) generated by a capillary aerosol generator on emphysematous changes, lung function, and molecular alterations in the respiratory system of female Apoe mice.
View Article and Find Full Text PDFCigarette smoking is one major modifiable risk factor in the development and progression of chronic obstructive pulmonary disease and cardiovascular disease. To characterize and compare cigarette smoke (CS)-induced disease endpoints after exposure in either whole-body (WB) or nose-only (NO) exposure systems, we exposed apolipoprotein E-deficient mice to filtered air (Sham) or to the same total particulate matter (TPM) concentration of mainstream smoke from 3R4F reference cigarettes in NO or WB exposure chambers (EC) for 2 months. At matching TPM concentrations, we observed similar concentrations of carbon monoxide, acetaldehyde, and acrolein, but higher concentrations of nicotine and formaldehyde in NOEC than in WBEC.
View Article and Find Full Text PDFNatural alkaloids, a large class of plant-derived substances, have attracted considerable interest because of their pharmacological activities. In this study, the pharmacokinetics and anti-inflammatory profile of anatabine, a naturally occurring alkaloid, were characterized in rodents. Anatabine was found to be bioavailable and brain-penetrant following systemic administration.
View Article and Find Full Text PDFSmoking cessation is the most effective measure for reducing the risk of smoking-related diseases. However, switching to less harmful products (modified-risk tobacco products [MRTP]) can be an alternative to help reduce the risk for adult smokers who would otherwise continue to smoke. In an 18-month chronic carcinogenicity/toxicity study in A/J mice (OECD Test Guideline 453), we assessed the aerosol of Tobacco Heating System 2.
View Article and Find Full Text PDFWe conducted an inhalation study, in accordance with Organisation for Economic Co-operation and Development Test Guideline 453, exposing A/J mice to tobacco heating system (THS) 2.2 aerosol or 3R4F reference cigarette smoke (CS) for up to 18 months to evaluate chronic toxicity and carcinogenicity. All exposed mice showed lower thymus and spleen weight, blood lymphocyte counts, and serum lipid concentrations than sham mice, most likely because of stress and/or nicotine effects.
View Article and Find Full Text PDFCigarette smoke (CS) causes adverse health effects and, for smoker who do not quit, modified risk tobacco products (MRTPs) can be an alternative to reduce the risk of developing smoking-related diseases. Standard toxicological endpoints can lack sensitivity, with systems toxicology approaches yielding broader insights into toxicological mechanisms. In a 6-month systems toxicology study on ApoE mice, we conducted an integrative multi-omics analysis to assess the effects of aerosols from the Carbon Heated Tobacco Product (CHTP) 1.
View Article and Find Full Text PDFThe use of flavoring substances is an important element in the development of reduced-risk products for adult smokers to increase product acceptance and encourage switching from cigarettes. In a first step towards characterizing the sub-chronic inhalation toxicity of neat flavoring substances, a study was conducted using a mixture of the substances in a base solution of e-liquid, where the standard toxicological endpoints of the nebulized aerosols were supplemented with transcriptomics analysis. The flavor mixture was produced by grouping 178 flavors into 26 distinct chemical groups based on structural similarities and potential metabolic and biological effects.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
January 2020
In vitro genetic toxicology assays are used to assess the genotoxic potential of chemicals or mixtures. They measure chromosome damage (e.g.
View Article and Find Full Text PDFSmoking cigarettes is harmful to the cardiovascular system. Considerable attention has been paid to the reduced harm potential of alternative nicotine-containing inhalable products such as e-cigarettes. We investigated the effects of E-vapor aerosols or cigarette smoke (CS) on atherosclerosis progression, cardiovascular function, and molecular changes in the heart and aorta of female apolipoprotein E-deficient (ApoE) mice.
View Article and Find Full Text PDFAim: To investigate the molecular, structural, and functional impact of aerosols from candidate modified risk tobacco products (cMRTP), the Carbon Heated Tobacco Product (CHTP) 1.2 and Tobacco Heating System (THS) 2.2, compared with that of mainstream cigarette smoke (CS) on the cardiovascular system of ApoE mice.
View Article and Find Full Text PDFCytotoxicity assays are used to quantify the cytotoxic potential of chemicals. The neutral red uptake (NRU) assay is one of these assays and is routinely used in the pharmaceutical, cosmetic, and tobacco industries. In the context of e-cigarette development, an NRU assay-based screen was implemented to evaluate the cytotoxic potential of e-liquids.
View Article and Find Full Text PDFNicotine, because of its volatility, has a complex dosimetry following inhalation as a vapor/aerosol mix. To better control the dosimetry, nicotine could be formulated with a suitable dry powder excipient for use in a clinical inhaler. The aim of this study was to investigate the pharmacokinetic PK profile of two dry powder formulations containing 2.
View Article and Find Full Text PDFNicotine's genotoxic potential has been extensively studied in vitro. While the results of mammalian cell-based studies have inferred that it can potentially damage chromosomes, in general and with few exceptions, adverse DNA effects have been observed primarily at supraphysiological concentrations in nonregulatory assays that provide little information on its mode-of-action (MoA). In this study, a modern-day regulatory genotoxicity assessment was conducted using a flow cytometry-based in vitro micronucleus (MN) assay, Good Laboratory Practice study conditions, Chinese hamster ovary cells of known provenance, and acceptance/evaluation criteria from the current OECD Test Guideline 487.
View Article and Find Full Text PDFWe compared early biological changes in mice after inhalation exposures to cigarette smoke or e-vapor aerosols (MarkTen cartridge with Carrier, Test-1, or Test-2 formulations; 4% nicotine). Female C57BL/6 mice were exposed to 3R4F cigarette smoke or e-vapor aerosols by nose-only inhalation for up to 4 hours/day, 5 days/week, for 3 weeks. The 3R4F and e-vapor exposures were set to match the target nose port aerosol nicotine concentration (∼41 µg/L).
View Article and Find Full Text PDFSmoking is the major cause of lung cancer. While the risk of lung cancer increases with the number of cigarettes smoked and the duration of smoking, it also decreases upon smoking cessation. The development of candidate modified risk tobacco products (cMRTP) is aimed at providing smokers who will not quit with alternatives to cigarettes that present less risk of harm and smoking-related disease.
View Article and Find Full Text PDFSmoking is one of the major modifiable risk factors in the development and progression of chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD). Modified-risk tobacco products (MRTP) are being developed to provide substitute products for smokers who are unable or unwilling to quit, to lessen the smoking-related health risks. In this study, the ApoE mouse model was used to investigate the impact of cigarette smoke (CS) from the reference cigarette 3R4F, or aerosol from two potential MRTPs based on the heat-not-burn principle, carbon heated tobacco product 1.
View Article and Find Full Text PDFWithin the framework of a systems toxicology approach, the inhalation toxicity of aerosol from a novel tobacco-heating potentially modified risk tobacco product (MRTP), the carbon-heated tobacco product (CHTP) 1.2, was characterized and compared with that of mainstream smoke (CS) from the 3R4F reference cigarette in a 90-day nose-only rat inhalation study in general accordance with OECD TG 413. CHTP1.
View Article and Find Full Text PDFModified risk tobacco products (MRTPs) have the potential to reduce smoking-related health risks. The Carbon Heated Tobacco Product 1.2 (CHTP1.
View Article and Find Full Text PDFThe US FDA defines modified risk tobacco products (MRTPs) as products that aim to reduce harm or the risk of tobacco-related disease associated with commercially marketed tobacco products. Establishing a product's potential as an MRTP requires scientific substantiation including toxicity studies and measures of disease risk relative to those of cigarette smoking. Best practices encourage verification of the data from such studies through sharing and open standards.
View Article and Find Full Text PDF