Publications by authors named "Vannuscorps G"

Motor planning and motor imagery are assumed to use veridical internal representations of the biomechanical properties of our limbs. Here, we report that people underestimate their hands' range of motion. We used two tasks probing representations of own motion range, estimation and imagery, in which participants were supposed to judge their rotational hand movement ranges.

View Article and Find Full Text PDF

Bach, Frank, and Kunde introduce a hypothesis that encompasses two main claims: (1) motor imagery relies primarily on representations of the perceptual effects of actions, and (2) the engagement of motor resources provides access to the specific timing, kinematic or internal bodily state that characterize an action. In this commentary, I argue that the first claim is compelling and suggest some alternatives to the second one.

View Article and Find Full Text PDF

Observing other people acting activates imitative motor plans in the observer. Whether, and if so when and how, such 'effector-specific motor simulation' contributes to action recognition remains unclear. We report that individuals born without upper limbs (IDs)-who cannot covertly imitate upper-limb movements-are significantly less accurate at recognizing degraded (but not intact) upper-limb than lower-limb actions (i.

View Article and Find Full Text PDF

In this response paper, we start by addressing the main points made by the commentators on the target article's main theoretical conclusions: the existence and characteristics of the (ISCRs) in the visual system, their emergence from edge detection mechanisms operating on different types of visual properties, and how they are eventually reunited in higher order frames of reference underlying conscious visual perception. We also address the much-commented issue of the possible neural mechanisms of the ISCRs. In the final section, we address more specific and general comments, questions, and suggestions which, albeit very interesting, were less directly focused on the main conclusions of the target paper.

View Article and Find Full Text PDF

Part of the multifaceted pathophysiology of Complex Regional Pain Syndrome (CRPS) is ascribed to lateralized maladaptive neuroplasticity in sensorimotor cortices, corroborated by behavioral studies indicating that patients present difficulties in mentally representing their painful limb. Such difficulties are widely measured with hand laterality judgment tasks (HLT), which are also used in the rehabilitation of CRPS to activate motor imagery and restore the cortical representation of the painful limb. The potential of these tasks to elicit motor imagery is critical to their use in therapy, yet, the influence of the body's biomechanical constraints (BMC) on HLT reaction time, supposed to index motor imagery activation, is rarely verified.

View Article and Find Full Text PDF

After a moving object has disappeared, observers typically mislocate its final position to where that object would have been if it had briefly continued to move. Previous studies have shown that this "forward displacement" (FD) is significantly smaller when observers see an upper-limb movement directed away from the body that would have been biomechanically impossible to continue along the same trajectory after it has disappeared than when the movement is directed toward the body and would have been easy to continue. This finding has been argued to reflect an implicit influence of observers' biomechanical knowledge on FD.

View Article and Find Full Text PDF

Previous studies have shown that judgments about how one would perform an action are affected by the current body posture. Hence, judging one's capability to grasp an object between index and thumb is influenced by their aperture at the time of the judgment. This finding can be explained by a modification of the internal representation of one's hand through the effect of sensorimotor input.

View Article and Find Full Text PDF

Although a great deal is known about the early sensory and the later, perceptual, stages of visual processing, far less is known about the nature of intermediate representational units and reference frames. Progress in understanding intermediate levels of representations in vision is hindered by the complexity of interactions among multiple levels of representation in the visual system, making it difficult to isolate and study the nature of each particular level. Nature occasionally provides the opportunity to peer inside complex systems by isolating components of a system through accidental damage or genetic modification of neural components.

View Article and Find Full Text PDF

We report the study of a woman who perceives 2D bounded regions of space ("shapes") defined by sharp edges of medium to high contrast as if they were rotated by 90, 180 degrees around their centre, mirrored across their own axes, or both. In contrast, her perception of 3D, strongly blurred or very low contrast shapes, and of stimuli emerging from a collection of shapes, is intact. This suggests that a stage in the process of constructing the conscious visual representation of a scene consists of representing mutually exclusive bounded regions extracted from the initial retinotopic space in "shape-centered" frames of reference.

View Article and Find Full Text PDF

Attention allows pieces of information stored in visuospatial short-term memory (VSSTM) to be selectively processed. Previous studies showed that shifts of attention in VSSTM in response to a retro-cue are accompanied by eye movements in the direction of the position of the memorized item although there is nothing left to look at. This finding raises the possibility that shifts of attention in VSSTM are underpinned by mechanisms originally involved in the planning and control of eye movements.

View Article and Find Full Text PDF

Asomatognosia designates the experience that one's body has faded from awareness. It is typically a somaesthetic experience but may target the visual modality ("asomatoscopy"). Frequently associated symptoms are the loss of ownership or agency over a limb.

View Article and Find Full Text PDF

All it takes is a face-to-face conversation in a noisy environment to realize that viewing a speaker's lip movements contributes to speech comprehension. What are the processes underlying the perception and interpretation of visual speech? Brain areas that control speech production are also recruited during lipreading. This finding raises the possibility that lipreading may be supported, at least to some extent, by a covert unconscious imitation of the observed speech movements in the observer's own speech motor system-a motor simulation.

View Article and Find Full Text PDF

Many parts of the visuomotor system guide daily hand actions, like reaching for and grasping objects. Do these regions depend exclusively on the hand as a specific body part whose movement they guide, or are they organized for the reaching task per se, for any body part used as an effector? To address this question, we conducted a neuroimaging study with people born without upper limbs-individuals with dysplasia-who use the feet to act, as they and typically developed controls performed reaching and grasping actions with their dominant effector. Individuals with dysplasia have no prior experience acting with hands, allowing us to control for hand motor imagery when acting with another effector (i.

View Article and Find Full Text PDF

The automatic allocation of attention to a salient stimulus in the visual periphery (e.g., a traffic light turning red) while maintaining fixation elsewhere (e.

View Article and Find Full Text PDF

What mechanisms underlie facial expression recognition? A popular hypothesis holds that efficient facial expression recognition cannot be achieved by visual analysis alone but additionally requires a mechanism of motor simulation - an unconscious, covert imitation of the observed facial postures and movements. Here, we first discuss why this hypothesis does not necessarily follow from extant empirical evidence. Next, we report experimental evidence against the central premise of this view: we demonstrate that individuals can achieve normotypical efficient facial expression recognition despite a congenital absence of relevant facial motor representations and, therefore, unaided by motor simulation.

View Article and Find Full Text PDF

Reading an action verb activates its corresponding motor representation in the reader's motor cortex, but whether this activation is relevant for comprehension remains unclear. To quantify the contribution of motor representations to the conceptual processing of action verbs, we measured the efficiency of two participants with atypical motor experience due to congenitally severely reduced upper limbs in processing verbs referring to actions that they had previously executed (e.g.

View Article and Find Full Text PDF

The human high-level visual cortex comprises regions specialized for the processing of distinct types of stimuli, such as objects, animals, and human actions. How does this specialization emerge? Here, we investigated the role of effector-specific visuomotor coupling experience in shaping the organization of the action observation network (AON) as a window on this question. Observed body movements are frequently coupled with corresponding motor codes, e.

View Article and Find Full Text PDF

What forces direct brain organization and its plasticity? When brain regions are deprived of their input, which regions reorganize based on compensation for the disability and experience, and which regions show topographically constrained plasticity? People born without hands activate their primary sensorimotor hand region while moving body parts used to compensate for this disability (e.g., their feet).

View Article and Find Full Text PDF

In everyday actions, we grasp dozens of different manipulable objects in ways that accommodate their functional use. Neuroimaging studies showed that grasping objects in a way that is appropriate for their use involves a left-lateralized network including the supramarginal gyrus (SMG), the anterior intraparietal area (AIP) and the ventral premotor cortex (PMv). However, because previous works premised their conclusions on tasks requiring action execution, it has remained difficult to discriminate between the areas involved in specifying the position of fingers onto the object from those implementing the motor programme required to perform the action.

View Article and Find Full Text PDF

The visual occipito-temporal cortex is composed of several distinct regions specialized in the identification of different object kinds such as tools and bodies. Its organization appears to reflect not only the visual characteristics of the inputs but also the behavior that can be achieved with them. For example, there are spatially overlapping responses for viewing hands and tools, which is likely due to their common role in object-directed actions.

View Article and Find Full Text PDF

When watching someone reaching to grasp an object, we typically gaze at the object before the agent's hand reaches it-that is, we make a "predictive eye movement" to the object. The received explanation is that predictive eye movements rely on a direct matching process, by which the observed action is mapped onto the motor representation of the same body movements in the observer's brain. In this article, we report evidence that calls for a reexamination of this account.

View Article and Find Full Text PDF

In this study, we addressed the issue of whether the brain sensorimotor circuitry that controls action production is causally involved in representing and processing action-related concepts. We examined the three-year pattern of evolution of brain atrophy, action production disorders, and action-related concept processing in a patient (J.R.

View Article and Find Full Text PDF

The perception of apparent body movement sometimes follows biologically plausible paths rather than paths along the shortest distance as in the case for inanimate objects. For numerous authors, this demonstrates that the somatosensory and motor representations of the observer's own body support and constrain the perception of others' body movements. In this paper, we report evidence that calls for a re-examination of this account.

View Article and Find Full Text PDF

Every day, we interact with people synchronously, immediately understand what they are doing, and easily infer their mental state and the likely outcome of their actions from their kinematics. According to various motor simulation theories of perception, such efficient perceptual processing of others' actions cannot be achieved by visual analysis of the movements alone but requires a process of motor simulation--an unconscious, covert imitation of the observed movements. According to this hypothesis, individuals incapable of simulating observed movements in their motor system should have difficulty perceiving and interpreting observed actions.

View Article and Find Full Text PDF