Publications by authors named "Vanner M"

Article Synopsis
  • Two elderly patients with multiple health issues presented with severe itchy blisters (bullae) after taking linagliptin for diabetes over six weeks.
  • Despite linagliptin's benefits for controlling blood sugar and its safety profile, these cases indicate a significant risk of developing bullous pemphigoid, a serious skin condition.
  • The combination of bullous pemphigoid and existing heart valve issues led to increased chances of severe infections like endocarditis, prompting a recommendation for cautious prescribing of linagliptin.
View Article and Find Full Text PDF

Several optomechanics experiments are now entering the highly sought nonlinear regime where optomechanical interactions are large even for low light levels. Within this regime, new quantum phenomena and improved performance may be achieved; however, a corresponding theoretical formalism of cavity quantum optomechanics that captures the nonlinearities of both the radiation-pressure interaction and the cavity response is needed to unlock these capabilities. Here, we develop such a nonlinear cavity quantum optomechanical framework, which we then utilize to propose how position measurement can be performed beyond the breakdown of the linearized approximation.

View Article and Find Full Text PDF

Kerr-effect-induced changes of the polarization state of light are well known in pulsed laser systems. An example is nonlinear polarization rotation, which is critical to the operation of many types of mode-locked lasers. Here, we demonstrate that the Kerr effect in a high-finesse Fabry-Pérot resonator can be utilized to control the polarization of a continuous wave laser.

View Article and Find Full Text PDF

Quantum optical measurement techniques offer a rich avenue for quantum control of mechanical oscillators via cavity optomechanics. In particular, a powerful yet little explored combination utilizes optical measurements to perform heralded non-Gaussian mechanical state preparation followed by tomography to determine the mechanical phase-space distribution. Here, we experimentally perform heralded single-phonon and multiphonon subtraction via photon counting to a laser-cooled mechanical thermal state with a Brillouin optomechanical system at room temperature and use optical heterodyne detection to measure the s-parametrized Wigner distribution of the non-Gaussian mechanical states generated.

View Article and Find Full Text PDF

Adding or subtracting a single quantum of excitation to a thermal state of a bosonic system has the counter-intuitive effect of approximately doubling its mean occupation. We perform the first experimental demonstration of this effect outside optics by implementing single-phonon addition and subtraction to a thermal state of a mechanical oscillator via Brillouin optomechanics in an optical whispering-gallery microresonator. Using a detection scheme that combines single-photon counting and optical heterodyne detection, we observe this doubling of the mechanical thermal fluctuations to a high precision.

View Article and Find Full Text PDF

As light propagates along a waveguide, a fraction of the field can be reflected by Rayleigh scatterers. In high-quality-factor whispering-gallery-mode microresonators, this intrinsic backscattering is primarily caused by either surface or bulk material imperfections. For several types of microresonator-based experiments and applications, minimal backscattering in the cavity is of critical importance, and thus, the ability to suppress backscattering is essential.

View Article and Find Full Text PDF

We revisit quantum state preparation of an oscillator by continuous linear position measurement. Quite general analytical expressions are derived for the conditioned state of the oscillator. Remarkably, we predict that quantum squeezing is possible outside of both the backaction dominated and quantum coherent oscillation regimes, relaxing experimental requirements even compared to ground-state cooling.

View Article and Find Full Text PDF

Busbridge, AR, Hamlin, MJ, Jowsey, JA, Vanner, MH, and Olsen, PD. Running demands of provincial women's rugby union matches in New Zealand. J Strength Cond Res 36(4): 1059-1063, 2022-There has been rapid growth in participation in women's rugby but there is minimal research on the sport.

View Article and Find Full Text PDF

We introduce quantum hypercube states, a class of continuous-variable quantum states that are generated as orthographic projections of hypercubes onto the quadrature phase space of a bosonic mode. In addition to their interesting geometry, hypercube states display phase-space features much smaller than Planck's constant, and a large volume of Wigner negativity. We theoretically show that these features make hypercube states sensitive to displacements at extremely small scales in a way that is surprisingly robust to initial thermal occupation and to small separation of the superposed state components.

View Article and Find Full Text PDF

Precision measurement of nonlinear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of nonlinear mechanical degrees-of-freedom remains outstanding.

View Article and Find Full Text PDF

A quantum internet, where widely separated quantum devices are coherently connected, is a fundamental vision for local and global quantum information networks and processing. Superconducting quantum devices can now perform sophisticated quantum engineering locally on chip and a detailed method to achieve coherent optical quantum interconnection between distant superconducting devices is a vital, but highly challenging, goal. We describe a concrete opto-magneto-mechanical system that can interconvert microwave-to-optical quantum information with high fidelity.

View Article and Find Full Text PDF

Observing a physical quantity without disturbing it is a key capability for the control of individual quantum systems. Such back-action-evading or quantum non-demolition measurements were first introduced in the 1970s for gravitational wave detection, and now such techniques are an indispensable tool throughout quantum science. Here we perform measurements of the position of a mechanical oscillator using pulses of light with a duration much shorter than a period of mechanical motion.

View Article and Find Full Text PDF

We introduce a method that can orthogonalize any pure continuous variable quantum state, i.e., generate a state |ψ (perpindicular)} from |ψ} where {ψ|ψ(perpindicular)}= 0, which does not require significant a priori knowledge of the input state.

View Article and Find Full Text PDF

Studying mechanical resonators via radiation pressure offers a rich avenue for the exploration of quantum mechanical behavior in a macroscopic regime. However, quantum state preparation and especially quantum state reconstruction of mechanical oscillators remains a significant challenge. Here we propose a scheme to realize quantum state tomography, squeezing, and state purification of a mechanical resonator using short optical pulses.

View Article and Find Full Text PDF

Microscale and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example, in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavours. Their performance is in many cases limited by the deleterious effects of mechanical damping. In this study, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators.

View Article and Find Full Text PDF

Achieving coherent quantum control over massive mechanical resonators is a current research goal. Nano- and micromechanical devices can be coupled to a variety of systems, for example to single electrons by electrostatic or magnetic coupling, and to photons by radiation pressure or optical dipole forces. So far, all such experiments have operated in a regime of weak coupling, in which reversible energy exchange between the mechanical device and its coupled partner is suppressed by fast decoherence of the individual systems to their local environments.

View Article and Find Full Text PDF

We demonstrate non-degenerate down-conversion at 810 and 1550 nm for long-distance fiber based quantum communication using polarization entangled photon pairs. Measurements of the two-photon visibility, without dark count subtraction, have shown that the quantum correlations (raw visibility 89%) allow secure quantum cryptography after 100 km of non-zero dispersion shifted fiber using commercially available single photon detectors. In addition, quantum state tomography has revealed little degradation of state negativity, decreasing from 0.

View Article and Find Full Text PDF

Micro-sized void spheres are successfully generated in a solid polymer by use of a tightly focused femtosecond laser beam from a high-repetition-rate laser oscillator. Confocal reflection images show that the void spheres are longitudinal rotational symmetric ellipsoids with a ratio of long to short axes of approximately 1.5.

View Article and Find Full Text PDF

Lipogenic response to feeding was measured in vivo in liver, epididymal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), during the development of obesity in gold-thioglucose (GTG)-injected mice. The fatty acid synthesis after a meal was higher in all tissues of GTG-treated mice on a total-tissue basis, but the magnitude of this increase varied, depending on the tissue and the time after the initiation of obesity. Lipogenesis in BAT from GTG mice was double that of control mice for the first 2 weeks, but subsequently decreased to near control values.

View Article and Find Full Text PDF

The amount of pyruvate dehydrogenase in the active form (PDHa) was increased 1.7-fold compared with controls in heart muscle of mice 1 week after induction of obesity with a single injection of gold-thioglucose. At 4 weeks post injection, the amount of PDHa was decreased to 32% of control, a value which was observed in later stages of the obesity syndrome.

View Article and Find Full Text PDF