Cation exchange has become a major postsynthetic tool to obtain nanocrystals with a combination of stoichiometry, size, and shape that is challenging to achieve by direct wet-chemical synthesis. Here, we report on the transformation of highly anisotropic, ultrathin, and planar PbS nanosheets into CdS nanosheets of the same dimensions. We monitor the evolution of the Cd-for-Pb exchange by TEM, HAADF-STEM, and EDX.
View Article and Find Full Text PDFColloidal 2D semiconductor nanocrystals, the analogue of solid-state quantum wells, have attracted strong interest in material science and physics. Molar quantities of suspended quantum objects with spectrally pure absorption and emission can be synthesized. For the visible region, CdSe nanoplatelets with atomically precise thickness and tailorable emission have been (almost) perfected.
View Article and Find Full Text PDFWe studied the initial nature and relaxation of photoexcited electronic states in CdSe nanoplatelets (NPLs). Ultrafast transient optical absorption (TA) measurements were combined with the theoretical analysis of the formation and decay of excitons, biexcitons, free charge carriers, and trions. In the latter, photons and excitons were treated as bosons and free charge carriers as fermions.
View Article and Find Full Text PDFDespite broad interest in colloidal lead halide perovskite nanocrystals (LHP NCs), their intrinsic fast growth has prevented controlled synthesis of small, monodisperse crystals and insights into the reaction mechanism. Recently, a much slower synthesis of LHP NCs with extreme size control has been reported, based on diluted TOPO/PbBr precursors and a diisooctylphosphinate capping ligand. We report new insights into the nucleation, growth, and self-assembly in this reaction, obtained by synchrotron-based small-angle X-ray scattering and optical absorption spectroscopy.
View Article and Find Full Text PDFImpurity doping of low-dimensional semiconductors is an interesting route towards achieving control over carrier dynamics and energetics, e.g., to improve hot carrier extraction, or to obtain strongly Stokes shifted luminescence.
View Article and Find Full Text PDFThe band structure and electronic properties of a material are defined by the sort of elements, the atomic registry in the crystal, the dimensions, the presence of spin-orbit coupling, and the electronic interactions. In natural crystals, the interplay of these factors is difficult to unravel, since it is usually not possible to vary one of these factors in an independent way, keeping the others constant. In other words, a complete understanding of complex electronic materials remains challenging to date.
View Article and Find Full Text PDFThe growth of two-dimensional platelets of the CdX family (X = S, Se, or Te) in an organic solvent requires the presence of both long- and short-chain ligands. This results in nanoplatelets of atomically precise thickness and long-chain ligand-stabilized Cd top and bottom surfaces. The platelets show a bright and spectrally pure luminescence.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2022
Cation exchange enables the preparation of nanocrystals (NCs), which are not reachable by direct synthesis methods. In this work, we applied Pb-for-Cd cation exchange on CdSe nanoplatelets (NPLs) to prepare two-dimensional CdSe-PbSe heterostructures and PbSe NPLs. Lowering the reaction temperature slowed down the rate of cation exchange, making it possible to characterize the intermediary NCs ex situ with atomically resolved high-angle annular dark-field scanning transmission electron microscopy and optical spectroscopy.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2022
Semiconductor superstructures made from assembled and epitaxially connected colloidal nanocrystals (NCs) hold promise for crystalline solids with atomic and nanoscale periodicity, whereby the band structure can be tuned by the geometry. The formation of especially the honeycomb superstructure on a liquid substrate is far from understood and suffers from weak replicability. Here, we introduce 1,4-butanediol as an unreactive substrate component, which is mixed with reactive ethylene glycol to tune for optimal reactivity.
View Article and Find Full Text PDFColloidal CdSe quantum rings (QRs) are a recently developed class of nanomaterials with a unique topology. In nanocrystals with more common shapes, such as dots and platelets, the photophysics is consistently dominated by strongly bound electron-hole pairs, so-called excitons, regardless of the charge carrier density. Here, we show that charge carriers in QRs condense into a hot uncorrelated plasma state at high density.
View Article and Find Full Text PDFLow-dimensional semiconductors have found numerous applications in optoelectronics. However, a quantitative comparison of the absorption strength of low-dimensional versus bulk semiconductors has remained elusive. Here, we report generality in the band-edge light absorptance of semiconductors, independent of their dimensions.
View Article and Find Full Text PDFThe excellent optoelectronic performance of lead halide perovskites has generated great interest in their fundamental properties. The polar nature of the perovskite lattice means that electron-lattice coupling is governed by the Fröhlich interaction. Still, considerable ambiguity exists regarding the phonon modes that participate in this crucial mechanism.
View Article and Find Full Text PDFThe variation in the shape of colloidal semiconductor nanocrystals (NCs) remains intriguing. This interest goes beyond crystallography as the shape of the NC determines its energy levels and optoelectronic properties. While thermodynamic arguments point to a few or just a single shape(s), terminated by the most stable crystal facets, a remarkable variation in NC shape has been reported for many different compounds.
View Article and Find Full Text PDFRock-salt lead selenide nanocrystals can be used as building blocks for large scale square superlattices via two-dimensional assembly of nanocrystals at a liquid-air interface followed by oriented attachment. Here we report Scanning Tunneling Spectroscopy measurements of the local density of states of an atomically coherent superlattice with square geometry made from PbSe nanocrystals. Controlled annealing of the sample permits the imaging of a clean structure and to reproducibly probe the band gap and the valence hole and conduction electron states.
View Article and Find Full Text PDFTrap states can strongly affect semiconductor nanocrystals, by quenching, delaying, and spectrally shifting the photoluminescence (PL). Trap states have proven elusive and difficult to study in detail at the ensemble level, let alone in the single-trap regime. CdSe nanoplatelets (NPLs) exhibit significant fractions of long-lived "delayed emission" and near-infrared "trap emission".
View Article and Find Full Text PDFHot-injection synthesis is renowned for producing semiconductor nanocolloids with superb size dispersions. Burst nucleation and diffusion-controlled size focusing during growth have been invoked to rationalize this characteristic yet experimental evidence supporting the pertinence of these concepts is scant. By monitoring a CdSe synthesis - with X-ray scattering, we find that nucleation is an extended event that coincides with growth during 15-20% of the reaction time.
View Article and Find Full Text PDFConspectusIntuitively, chemists see crystals grow atom-by-atom or molecule-by-molecule, very much like a mason builds a wall, brick by brick. It is much more difficult to grasp that small crystals can meet each other in a liquid or at an interface, start to align their crystal lattices and then grow together to form one single crystal. In analogy, that looks more like prefab building.
View Article and Find Full Text PDFThe luminescence of CuInS quantum dots (QDs) is slower and spectrally broader than that of many other types of QDs. The origin of this anomalous behavior is still under debate. Single-QD experiments could help settle this debate, but studies by different groups have yielded conflicting results.
View Article and Find Full Text PDFElectron states in semiconductor materials can be modified by quantum confinement. Adding to semiconductor heterostructures the concept of lateral geometry offers the possibility to further tailor the electronic band structure with the creation of unique flat bands. Using block copolymer lithography, we describe the design, fabrication, and characterization of multiorbital bands in a honeycomb InGaAs/InP heterostructure quantum well with a lattice constant of 21 nm.
View Article and Find Full Text PDFTheory anticipates that the in-plane p, p orbitals in a honeycomb lattice lead to potentially useful quantum electronic phases. So far, p orbital bands were only realized for cold atoms in optical lattices and for light and exciton-polaritons in photonic crystals. For electrons, in-plane p orbital physics is difficult to access since natural electronic honeycomb lattices, such as graphene and silicene, show strong s-p hybridization.
View Article and Find Full Text PDFThe adsorption, self-organization and oriented attachment of PbSe nanocrystals (NCs) at liquid-air interfaces has led to remarkable nanocrystal superlattices with atomic order and a superimposed nanoscale geometry. Earlier studies examined the NC self-organization at the suspension/air interface with time-resolved in-situ X-ray scattering. Upon continuous evaporation of the solvent, the NC interfacial layer will finally contact the (ethylene glycol) liquid substrate on which the suspension was casted.
View Article and Find Full Text PDFIn this work, we theoretically investigate the conditions favoring the interfacial self-assembly of PbSe nanocrystals (NCs) resulting in silicene-honeycomb superstructures. Using a coarse-grained molecular dynamics model, we study the NCs' self-assembly at the dispersion-air interface with respect to the input parameters regulating the various forces experienced by the NCs at the interface. From these results, we extrapolate detailed assembled-phase diagrams showing which ranges of the input parameters promote the formation of silicene-honeycomb superstructures and which regimes result in square geometries.
View Article and Find Full Text PDFQuantum simulators are essential tools for understanding complex quantum materials. Platforms based on ultracold atoms in optical lattices and photonic devices have led the field so far, but the basis for electronic quantum simulators is now being developed. Here, we experimentally realize an electronic higher-order topological insulator (HOTI).
View Article and Find Full Text PDFColloidal InP core nanocrystals are taking over CdSe-based nanocrystals, notably in optoelectronic applications. Despite their use in commercial devices, such as display screens, the optical properties of InP nanocrystals and especially their relation to the exciton fine structures remain poorly understood. In this work, we show that the ensemble magneto-optical properties of InP-based core/shell nanocrystals investigated in strong magnetic fields up to 30 T are strikingly different from other colloidal nanostructures.
View Article and Find Full Text PDF