Publications by authors named "Vanitha P"

The primary objective of this study was to assess the probiotic attributes and antifungal activity of lactic acid bacteria (LAB) against the fungus, . Among the 20 isolates screened for their antifungal attributes, isolate MYSN7 showed strong antifungal activity and was selected for further analysis. The isolate MYSN7 exhibited potential probiotic characteristics, having 75 and 70% survival percentages in pH3 and pH2, respectively, 68.

View Article and Find Full Text PDF

During past twenty years the opportunistic fungal infections have been emerging, causing morbidity and mortality. The fungi belonging to and others cause severe opportunistic fungal infections. Among these and cause majority of the diseases.

View Article and Find Full Text PDF

Oxidative stress is an important factor contributing to the pathogenesis of diabetes and its complications. In our earlier study, we demonstrated the antidiabetic efficacy of morin by regulating key enzymes of carbohydrate metabolism in diabetic rats. The present study was designed to assess the antigenotoxic potential of morin in pancreatic β-cells, using the COMET assay.

View Article and Find Full Text PDF

The present study was aimed to evaluate the effect of morin on blood glucose, insulin level, hepatic glucose regulating enzyme activities and glycogen level in experimental diabetes. Diabetes mellitus was induced by a single intraperitoneal injection of streptozotocin (STZ) (50 mg/kg b.w.

View Article and Find Full Text PDF

In the present study, we investigated the antioxidant effect of gallic acid (GA) on membrane lipid peroxidation and osmotic fragility in alloxan-induced diabetic Wistar rats. GA was administered orally at doses of 5, 10, and 20 mg/kg body weight for 45 days, after which liver and kidney tissues were analyzed for the degree of lipid peroxidation, reduced glutathione, and the activities of antioxidants such as catalase, superoxide dismutase, and glutathione peroxidase. Administration of GA to alloxan-induced diabetic rats reduced the blood glucose level with an increase in the level of insulin.

View Article and Find Full Text PDF

In the present study, the effect of alcoholic stem extract of Gymnema montanum (GMSt) on blood glucose, plasma insulin, and carbohydrate metabolic enzymes were studied in experimental diabetes. Diabetes mellitus was induced by a single intraperitoneal injection of STZ (60 mg/kg bw). Five days after STZ induction, diabetic rats received GMSt orally at the doses of 25, 50, 100 and 200mg/kg daily for 3 weeks.

View Article and Find Full Text PDF

The use of the water-oil interface provides significant advantages in the synthesis of inorganic nanostructures. Employing the water-toluene interface, luminescent CdS nanocrystals have been obtained at a relatively modest temperature of 35 degrees C. The diameters of the particulates can be varied between 1.

View Article and Find Full Text PDF

Phase control has been achieved in the synthesis of magnetic iron sulfide nanocrystals by the use of a single source precursor, a cubane type Fe-S cluster, bis(tetra-n-butylammonium) tetrakis[benezenethiolato-mu3-sulfido-iron]. This cluster cleanly decomposes in alkylamines to yield nanocrystals whose composition, structure, and dimensions are dependent on the temperature employed. At low temperatures, pyrrhotite type Fe7S8 nanocrystals with an average diameter of 5.

View Article and Find Full Text PDF

gamma-Fe2O3 nanocrystals capped with citrate and octylamine have been chemically prepared. The octylamine-capped nanocrystals exhibit a tendency to form ordered lattices. Films of nanocrystals of varying thickness (454, 720, and 1400 microg/cm2 in the case of citrate-capped nanocrystals and 300 microg/cm2 in the case of octylamine-capped nanocrystals) have been prepared on Si(100) substrates by drop casting and have been characterized by X-ray diffraction, scanning electron microscopy, and atomic force microscopy.

View Article and Find Full Text PDF

A fascinating phenomenon, recently found to occur in certain transition-metal oxides, is phase separation wherein pure, nominally monophasic oxides of transition metals with well-defined compositions separate into two or more phases over a specific temperature range. Such phase separation is entirely reversible, and is generally the result of a competition between charge-localization and -delocalization, the two situations being associated with contrasting electronic and magnetic properties. Coexistence of more than one phase, therefore, gives rise to electronic inhomogeneity and a diverse variety of magnetic, transport, and other properties, not normally expected of the nominal monophasic composition.

View Article and Find Full Text PDF