Objective: Cysteamine, a drug approved to treat cystinosis, has been proposed as a host-directed therapy for (Mtb) and SARS-CoV-2. The impact of cysteamine on the immune responses has not been fully investigated. We aimed to evaluate the immunomodulatory effects of cysteamine on peripheral blood mononuclear cells (PBMCs) using the purified protein derivative (PPD) as a recall antigen, and an unspecific stimulus as staphylococcal enterotoxin B (SEB).
View Article and Find Full Text PDFBackground: Identifying stage-specific antigens is essential for developing tuberculosis (TB) diagnostics and vaccines. In a low TB endemic country, we characterized, the Mycobacterium tuberculosis (Mtb)-specific immune response to a pool of Mtb-derived epitopes (ATB116), demonstrated as associated with TB disease.
Methods: In this prospective observational cross-sectional study, we enrolled healthy donors (HD), subjects with TB disease, and TB infection (TBI) at baseline and therapy completion.
This study investigated the incidence and severity of SARS-CoV-2 breakthrough infections (BIs) and the time to swab reversion in patients with multiple sclerosis (PwMS) after the booster dose of COVID-19 mRNA vaccines. We enrolled 64 PwMS who had completed the three-dose mRNA vaccine schedule and had never experienced COVID-19 before. Among the 64 PwMS, 43.
View Article and Find Full Text PDFIntroduction: IFN-γ release assays (IGRAs) are one of the referral tests for diagnosing tuberculosis infection (TBI). To improve IGRAs accuracy, several markers have been investigated. Patients with immune-mediated inflammatory diseases (IMID), taking biological drugs, have a higher risk to progress to TB-disease compared to the general population.
View Article and Find Full Text PDF: We aimed to analyse the incidence and severity of breakthrough infections (BIs) in rheumatoid arthritis (RA) patients after a COronaVIrus Disease 2019 (COVID-19) vaccination booster dose. : We enrolled 194 RA patients and 1002 healthcare workers (HCWs) as controls. Clinical, lifestyle and demographic factors were collected at the time of the third dose, and immunogenicity analyses were carried out in a subgroup of patients at 4-6 weeks after the third dose.
View Article and Find Full Text PDFThis study characterizes antibody and T-cell immune responses over time until the booster dose of COronaVIrus Disease 2019 (COVID-19) vaccines in patients with multiple sclerosis (PwMS) undergoing different disease-modifying treatments (DMTs). We prospectively enrolled 134 PwMS and 99 health care workers (HCWs) having completed the two-dose schedule of a COVID-19 mRNA vaccine within the last 2-4 weeks (T0) and followed them 24 weeks after the first dose (T1) and 4-6 weeks after the booster (T2). PwMS presented a significant reduction in the seroconversion rate and anti-receptor-binding domain (RBD)-Immunoglobulin (IgG) titers from T0 to T1 ( < 0.
View Article and Find Full Text PDFObjectives: To characterize the plasma immune profile of patients with tuberculosis (TB)-COVID-19 compared with COVID-19, TB, or healthy controls and to evaluate in vitro the specific responses to SARS-CoV-2 and Mycobacterium tuberculosis (Mtb)-antigens.
Methods: We enrolled 119 subjects: 14 TB-COVID-19, 47 COVID-19, 38 TB, and 20 controls. The plasmatic levels of 27 immune factors were measured at baseline using a multiplex assay.
Diagnostic services for tuberculosis (TB) are not sufficiently accessible in low-resource settings, where most cases occur, which was aggravated by the COVID-19 pandemic. Early diagnosis of pulmonary TB can reduce transmission. Current TB-diagnostics rely on detection of in sputum requiring costly, time-consuming methods, and trained staff.
View Article and Find Full Text PDFBackground: The decline of humoral response to COVID-19 vaccine led to authorise a booster dose. Here, we characterised the kinetics of B-cell and T-cell immune responses in patients with multiple sclerosis (PwMS) after the booster dose.
Methods: We enrolled 22 PwMS and 40 healthcare workers (HCWs) after 4-6 weeks from the booster dose (T3).
Objectives: To characterize the kinetics of humoral and T-cell responses in rheumatoid arthritis (RA)-patients followed up to 4-6 weeks (T3) after the SARS-CoV-2 vaccine booster dose.
Methods: Health care workers (HCWs, n = 38) and patients with RA (n = 52) completing the messenger RNA vaccination schedule were enrolled at T3. In each cohort, 25 subjects were sampled after 5 weeks (T1) and 6 months (T2) from the first vaccine dose.
Objective: Several therapies with immune-modulatory functions have been proposed to reduce the overwhelmed inflammation associated with COVID-19. Here we investigated the impact of IL-10 in COVID-19, through the assessment of the effects of exogenous IL-10 on SARS-CoV-2-specific-response using a whole-blood platform.
Methods: Two cohorts were evaluated: in "study population A", plasma levels of 27 immune factors were measured by a multiplex (Luminex) assay in 39 hospitalized "COVID-19 patients" and 29 "NO COVID-19 controls" all unvaccinated.
Objective: To better define the immunopathogenesis of COVID-19, the present study aims to characterize the early immune responses to SARS-CoV-2 infection in household contacts of COVID-19 cases. In particular, innate, T- and B-cell specific responses were evaluated over time.
Methods: Household contacts of COVID-19 cases screened for SARS-CoV-2 infection by nasopharyngeal swab for surveillance purposes were enrolled (T0, n=42).
Objectives: In this study, we aimed to characterize the SARS-CoV-2-specific T cell response detected by the QuantiFERON SARS-CoV-2 research use only assay in terms of accuracy and T cell subsets involved compared with a homemade interferon (IFN)-γ release assay (IGRA).
Methods: We evaluated T cell response by the standardized QuantiFERON SARS-CoV-2 tubes (antigen [Ag]1 and Ag2) and a homemade IGRA quantifying IFN-γ response to SARS-CoV-2 spike peptides (homemade-IGRA-SPIKE test). We evaluated the T cell subsets mediating the specific response using flow cytometry.
Objectives: We assessed vaccination-induced antibody and cellular response against spike from the ancestral strain and from the Delta Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) variant in patients with Multiple Sclerosis (MS) treated with disease modifying treatments.
Methods: We enrolled 47 patients with MS and nine controls ("no MS") having completed the vaccination schedule within 4-6 months from the first dose. The Interferon (IFN)-γ-response to spike peptides derived from the ancestral and the Delta SARS-CoV-2 was measured by enzyme-linked immunoassay (ELISA).
Objectives: We assessed vaccination-induced antibody and cellular responses against spike from the ancestral strain and from the delta (δ) SARS-CoV-2 variant in patients with immune-mediated inflammatory diseases (IMIDs) on immunosuppressive therapy in comparison with immunocompetent subjects.
Methods: We enrolled patients with IMID and immunocompetent subjects who completed the vaccination schedule within 4-6 months from the first dose. The interferon (IFN)-γ-response to spike peptides that were derived from the ancestral and the δ SARS-CoV-2 were measured by ELISA.
Objective: To assess the kinetics of the humoral and cell-mediated responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in rheumatoid arthritis (RA) patients treated with different immunosuppressive therapies.
Methods: Following vaccine completed schedule, health care workers (HCWs, n = 49) and RA patients (n = 35) were enrolled at 5 weeks (T1) and 6 months (T6) after the first dose of BNT162b2-mRNA vaccination. Serological response was assessed by quantifying anti-receptor-binding domain (RBD)-specific immunoglobulin G (IgG) and SARS-CoV-2 neutralizing antibodies, while cell-mediated response was assessed by a whole-blood test quantifying the interferon (IFN)-γ response to spike peptides.
Background And Objectives: To evaluate the immune-specific response after full severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination of patients with multiple sclerosis (MS) treated with different disease-modifying drugs by the detection of both serologic and T-cell responses.
Methods: Healthcare workers (HCWs) and patients with MS, having completed the 2-dose schedule of an mRNA-based vaccine against SARS-CoV-2 in the past 2-4 weeks, were enrolled from 2 parallel prospective studies conducted in Rome, Italy, at the National Institute for Infectious diseases Spallanzani-IRCSS and San Camillo Forlanini Hospital. Serologic response was evaluated by quantifying the region-binding domain (RBD) and neutralizing antibodies.
Objective: To assess in rheumatoid arthritis (RA) patients, treated with different immunosuppressive therapies, the induction of SARS-CoV-2-specific immune response after vaccination in terms of anti-region-binding-domain (RBD)-antibody- and T-cell-specific responses against spike, and the vaccine safety in terms of clinical impact on disease activity.
Methods: Health care workers (HCWs) and RA patients, having completed the BNT162b2-mRNA vaccination in the last 2 weeks, were enrolled. Serological response was evaluated by quantifying anti-RBD antibodies, while the cell-mediated response was evaluated by a whole-blood test quantifying the interferon (IFN)-γ-response to spike peptides.
Subjects with immune-mediated inflammatory diseases (IMID), such as rheumatoid arthritis (RA), have an intrinsic higher probability to develop active-tuberculosis (TB) compared to the general population. The risk ranges from 2.0 to 8.
View Article and Find Full Text PDFMore than 4 millions of children with congenital heart disease (CHD) are waiting for cardiac surgery around the world. Few of these patients are treated only thanks to the support of many non-governmental organizations (NGOs). Starting in December 2019, the so-called coronavirus disease 2019 (COVID-19) has rapidly become a worldwide pandemic and has dramatically impacted on all the international humanitarian activities for congenital heart disease.
View Article and Find Full Text PDFVaccination is the main public health measure to reduce SARS-CoV-2 transmission and hospitalization, and a massive worldwide scientific effort resulted in the rapid development of effective vaccines. This work aimed to define the dynamics of humoral and cell-mediated immune response in a cohort of health care workers (HCWs) who received a two-dose BNT162b2-mRNA vaccination. The serological response was evaluated by quantifying the anti-RBD and neutralizing antibodies.
View Article and Find Full Text PDFBackground: Recent studies proposed the whole-blood based IFN-γ-release assay to study the antigen-specific SARS-CoV-2 response. Since the early prediction of disease progression could help to assess the optimal treatment strategies, an integrated knowledge of T-cell and antibody response lays the foundation to develop biomarkers monitoring the COVID-19. Whole-blood-platform tests based on the immune response detection to SARS-CoV2 peptides is a new approach to discriminate COVID-19-patients from uninfected-individuals and to evaluate the immunogenicity of vaccine candidates, monitoring the immune response in vaccine trial and supporting the serological diagnostics results.
View Article and Find Full Text PDFTuberculosis (TB), due to infection, is still the principal cause of death caused by a single infectious agent. The balance between the bacillus and host defense mechanisms reflects the different manifestations of the pathology. Factors defining this variety are unclear and likely involve both mycobacterial and immunological components.
View Article and Find Full Text PDFObjectives: To identify the best experimental approach to detect a SARS-CoV-2-specific T cell response using a whole-blood platform.
Methods: Whole-blood from 56 COVID-19 and 23 "NO-COVID-19" individuals were stimulated overnight with different concentrations (0.1 or 1 μg/mL) of SARS-CoV-2 PepTivator® Peptide Pools, including spike (pool S), nucleocapsid (pool N), membrane (pool M), and a MegaPool (MP) of these three peptide pools.