Publications by authors named "Vania Vidimar"

The lack of effective RAS inhibition represents a major unmet medical need in the treatment of pancreatic ductal adenocarcinoma (PDAC). Here, we investigate the anticancer activity of RRSP-DTB, an engineered biologic that cleaves the Switch I of all RAS isoforms, in KRAS-mutant PDAC cell lines and patient-derived xenografts (PDX). We first demonstrate that RRSP-DTB effectively engages RAS and impacts downstream ERK signaling in multiple KRAS-mutant PDAC cell lines inhibiting cell proliferation at picomolar concentrations.

View Article and Find Full Text PDF

Ras-specific proteases to degrade RAS within cancer cells are under active development as an innovative strategy to treat tumorigenesis. The naturally occurring biological toxin effector called RAS/RAP1-specific endopeptidase (RRSP) is known to cleave all RAS within a cell, including HRAS, KRAS, NRAS and mutant KRAS G13D. Yet, our understanding of the mechanisms by which RRSP drives growth inhibition are unknown.

View Article and Find Full Text PDF

Cancer cells accumulate somatic mutations as result of DNA damage, inaccurate repair and other mechanisms. Different genetic instability processes result in characteristic non-random patterns of DNA mutations, also known as mutational signatures. We developed mutSignatures, an integrated R-based computational framework aimed at deciphering DNA mutational signatures.

View Article and Find Full Text PDF

Despite nearly four decades of effort, broad inhibition of oncogenic RAS using small-molecule approaches has proven to be a major challenge. Here we describe the development of a pan-RAS biologic inhibitor composed of the RAS-RAP1-specific endopeptidase fused to the protein delivery machinery of diphtheria toxin. We show that this engineered chimeric toxin irreversibly cleaves and inactivates intracellular RAS at low picomolar concentrations terminating downstream signaling in receptor-bearing cells.

View Article and Find Full Text PDF

Targeting specific tumor metabolic needs represents an actively investigated therapeutic strategy to bypass tumor resistance mechanisms. In this study, we describe an original approach to impact the cancer metabolism by exploiting the redox properties of a ruthenium organometallic compound. This organometallic complex induced p53-independent cytotoxicity and reduced size and vascularization of patients-derived tumor explants that are resistant to platinum drugs.

View Article and Find Full Text PDF

A deeper understanding of the pathways that drive uterine leiomyoma (ULM) growth and survival requires model systems that more closely mimic the in vivo tumors. This would provide new insights into developing effective therapeutic strategies for these common benign tumors of childbearing-aged women. In this study, we examined the role of BCL-2 in mediating ULM survival in the context of increased protein kinase B (AKT) and oxidative stress using a three-dimensional (3D), spheroid-based model that more closely resembles the native ULM tumor microenvironment.

View Article and Find Full Text PDF

AKT signaling promotes cell growth and survival and is often dysregulated via multiple mechanisms in different types of cancer, including uterine leiomyomas (ULMs). ULMs are highly prevalent fibrotic tumors that arise from the smooth muscular layer of the uterus, the myometrium (MM). ULMs pose a major public health issue because they can cause severe morbidity and poor pregnancy outcomes.

View Article and Find Full Text PDF

Muscular atrophy, a physiopathologic process associated with severe human diseases such as amyotrophic lateral sclerosis (ALS) or cancer, has been linked to reactive oxygen species (ROS) production. The Notch pathway plays a role in muscle development and in muscle regeneration upon physical injury. In this study, we explored the possibility that the Notch pathway participates in the ROS-related muscular atrophy occurring in cancer-associated cachexia and ALS.

View Article and Find Full Text PDF

Uterine leiomyomas (fibroids) are a major public health problem. Current medical treatments with GnRH analogs do not provide long-term benefit. Thus, permanent shrinkage or inhibition of fibroid growth via medical means remains a challenge.

View Article and Find Full Text PDF

Organometallic compounds which contain metals, such as ruthenium or gold, have been investigated as a replacement for platinum-derived anticancer drugs. They often show good antitumor effects, but the identification of their precise mode of action or their pharmacological optimization is still challenging. We have previously described a class of ruthenium(II) compounds with interesting anticancer properties.

View Article and Find Full Text PDF