Publications by authors named "Vani Nilakantan"

Acute kidney injury (AKI) commonly occurs in hospitalized patients and can lead to serious medical complications. But it is preventable and potentially reversible with early diagnosis and management. Therefore, several machine learning based predictive models have been built to predict AKI in advance from electronic health records (EHR) data.

View Article and Find Full Text PDF

Background: Acute Kidney Injury (AKI) occurs in at least 5 % of hospitalized patients and can result in 40-70 % morbidity and mortality. Even following recovery, many subjects may experience progressive deterioration of renal function. The heterogeneous etiology and pathophysiology of AKI complicates its diagnosis and medical management and can add to poor patient outcomes and incur substantial hospital costs.

View Article and Find Full Text PDF

Objective: This study investigates the effect of a superoxide dismutase mimetic, MnTMPyP, on pro- and anti-inflammatory cytokines in acute renal ischemia-reperfusion (IR).

Materials And Treatment: Male Sprague-Dawley rats underwent bilateral clamping of the renal arteries for 45 min followed by 1, 4, or 24 h of reperfusion. A subset of animals was treated with MnTMPyP (5 mg/kg, i.

View Article and Find Full Text PDF

Background: Improved kidney preservation methods are needed to reduce ischemia-reperfusion (IR) injury in kidney allografts. Lifor is an artificial preservation solution comprised of nutrients, growth factors, and a non-protein oxygen and nutrient carrier. The current study compared the effectiveness of Lifor to University of Wisconsin solution (UW) in protecting rat kidneys from warm IR and cold storage injury.

View Article and Find Full Text PDF

Generation of excessive reactive oxygen species (ROS) leads to mitochondrial dysfunction, apoptosis, and necrosis in renal ischemia-reperfusion (IR) injury. Previously we showed that lentiviral vector-mediated overexpression of superoxide dismutase-1 (SOD1) in proximal tubular epithelial cells (LLC-PK(1)) reduced cytotoxicity in an in vitro model of IR injury. Here, we examined the effects of SOD1 overexpression on mitochondrial signaling after ATP depletion-recovery (ATP-DR).

View Article and Find Full Text PDF

This study examined the time-dependent effects of a cell permeable SOD mimetic, MnTMPyP, on mitochondrial function in renal ischemia-reperfusion injury (IRI). Male SD rats were subject to either sham operation or bilateral renal ischemia for 45 min followed by reperfusion for 1, 4 or 24 h. A sub-set of animals was treated with either saline vehicle or 5 mg/Kg of MnTMPyP (i.

View Article and Find Full Text PDF

Angiotensin converting enzyme (ACE) inhibition is a common therapeutic modality in the treatment of autosomal recessive polycystic kidney disease (ARPKD). This study was designed to investigate whether chronic inhibition of ACE would have a therapeutic effect in attenuating the progression of renal cystogenesis in an orthologous rat model of ARPKD, the polycystic kidney (PCK) rat. Lisinopril (3 mg/kg per day) was administered orally for a period of 12 weeks, beginning at post-natal week 4.

View Article and Find Full Text PDF

The role of mitochondrial K(ATP) (mitoK(ATP)) channels in renal ischemia-reperfusion injury is controversial with studies showing both protective and deleterious effects. In this study, we compared the effects of the putative mitoK(ATP) opener, diazoxide, and the mitoK(ATP) blocker, 5-hydroxydecanoate (5-HD) on cytotoxicity and apoptosis in tubular epithelial cells derived from rat (NRK-52E) and pig (LLC-PK1) following in vitro ischemic injury. Following ATP depletion-recovery, there was a significant increase in cytotoxicity in both NRK cells and LLC-PK1 cells although NRK cells were more sensitive to the injury.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) contribute significantly to apoptosis in renal ischemia-reperfusion (IR) injury, however the exact mechanisms are not well understood. We used novel lentiviral vectors to over-express superoxide dismutase 1 (SOD1) in proximal tubular epithelial (LLC-PK(1)) cells and determined effects of SOD1 following ATP depletion-recovery, used as a model to simulate renal IR. SOD1 over-expression partially protected against cytotoxicity (P < 0.

View Article and Find Full Text PDF

In this review, the role of NF-kappaB in the induction of hepatocarcinogenesis by peroxisome proliferators is examined. The administration of peroxisome proliferators for more than a three-day period leads to the activation of NF-kappaB in the livers of rats and mice. On the other hand, peroxisome proliferator activated receptor-alpha (PPARalpha) activation in non-hepatic tissues can lead to the inhibition of NF-kappaB activation.

View Article and Find Full Text PDF

Oxidative stress and apoptosis are important factors in the etiology of renal ischemia-reperfusion (I/R) injury. The present study tested the hypothesis that the cell-permeant SOD mimetic manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP) protects the kidney from I/R-mediated oxidative stress and apoptosis in vivo. Male Sprague-Dawley rats (175-220 g) underwent renal I/R by bilateral clamping of the renal arteries for 45 min followed by reperfusion for 24 h.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is characterized by ATP depletion in the ischemic phase, followed by a rapid increase in reactive oxygen species, including peroxynitrite in the reperfusion phase. In this study, we examined the role of peroxynitrite on cytotoxicity and apoptosis in an in vitro model of ATP depletion-recovery. Porcine proximal tubular epithelial (LLC-PK(1)) cells were ATP depleted for either 2 h (2/2) or 4 h (4/2) followed by recovery in serum free medium for 2 h.

View Article and Find Full Text PDF

Apoptosis is a significant factor in cardiac dysfunction and graft failure in cardiac rejection. In this study, we examined potential signaling molecules responsible for caspase 3 activation in a model of acute cardiac allograft rejection. The roles of reactive oxygen species (ROS) and nitric oxide (NO) were determined in untreated allografts and allograft recipients treated with either cyclosporine (CsA), alpha-phenyl-t-butylnitrone (PBN, a spin-trapping agent), vitamin C (VitC), Mn(III)tetrakis (1-methyl-4-pyridyl)porphyrin); MnTmPyP, a superoxide dismutase (SOD) mimetic), or L-(1-iminoethyl)lysine) (L-NIL), an inhibitor of inducible NO synthase (iNOS) enzyme activity.

View Article and Find Full Text PDF

20-HETE, a metabolite of arachidonic acid, has been implicated as a mediator of free radical formation and tissue death following ischemia-reperfusion (IR) injury in the brain and heart. The present study examined the role of this pathway in a simulated IR renal injury model in vitro. Modified self-inactivating lentiviral vectors were generated to stably overexpress murine Cyp4a12 following transduction into LLC-PK(1) cells (LLC-Cyp4a12).

View Article and Find Full Text PDF

Oxidant-mediated apoptosis has been implicated in renal injury due to ischemia reperfusion (IR); however, the apoptotic signaling pathways following IR have been incompletely defined. The purpose of this study was to examine the role of oxidants on cell death in a model of in vitro simulated IR injury in renal proximal tubular epithelial cells by analyzing the effects of a cell-permeable superoxide dismutase mimetic, manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTmPyP). Renal proximal tubular epithelial cells were ATP depleted for 2, 4, or 6 h, followed by 2 h of recovery.

View Article and Find Full Text PDF

Oxidative stress is important in the pathogenesis of renal ischemia-reperfusion (IR) injury; however whether imbalances in reactive oxygen production and disposal account for susceptibility to injury is unclear. The purpose of this study was to compare necrosis, apoptosis, and oxidative stress in IR-resistant Brown Norway rats vs. IR-susceptible Sprague-Dawley (SD) rats in an in vivo model of renal IR injury.

View Article and Find Full Text PDF

Objective: The relative contributions of the fraction of inspired oxygen (FIO2) and atmospheric pressure (ATM) to cardioprotection are unknown. We determined whether the product of FIO2 x ATM (oxygen partial pressure) controls the extent of hyperoxic+hyperbaric-induced cardioprotection and involves activation of nitric oxide synthase (NOS).

Methods: Adult Sprague Dawley rats (n = 10/gp) were treated for 1 h with (1) normoxia+normobaria (21% O2 at 1 ATM), (2) hyperoxia+normobaria (100% O2 at 1 ATM), (3) normoxia+hyperbaria (21% O2 at 2 ATM) and (4) hyperoxia+hyperbaria (100% O2 at 2 ATM).

View Article and Find Full Text PDF

Background: Anti-oxidant vitamins have increasingly been used to supplement traditional post-surgical treatment in cardiac transplant recipients. However, the mechanism(s) of action have not been determined. In this study we examined the effects of a novel vitamin E analog, alpha-tocopheryl polyethylene glycol-100 succinate (alpha-TPGS), and low-dose cyclosporine (CsA) in the treatment of acute and delayed cardiac rejection.

View Article and Find Full Text PDF

Objective: Oxidative stress might be an important factor contributing to injury during alloimmune activation. Herein, we evaluated the efficacy of a superoxide dismutase mimetic, manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTmPyP), on cytokine gene expression and apoptotic signaling in a rat model of cardiac transplantation.

Methods: Lewis-->Lewis (isografts) or Wistar-Furth-->Lewis (allografts) heterotopic rat transplants without and with treatment with MnTmPyP were used.

View Article and Find Full Text PDF

Background: Nitration of a critical tyrosine residue in the active site of manganese superoxide dismutase (MnSOD) can lead to enzyme inactivation. In this study, we examined the effect of inducible nitric oxide synthase (iNOS) on MnSOD expression, activity and nitration in acutely rejecting cardiac transplants.

Methods: Lewis (isograft) or Wistar-Furth (allograft) donor hearts were transplanted into Lewis recipient rats.

View Article and Find Full Text PDF

Inducible nitric oxide synthase (iNOS) is a prominent component of the complex array of mediators in acute graft rejection. While NO production is determined by iNOS expression, BH4 (tetrahydrobiopterin), a cofactor of iNOS synthesized by GTP cyclohydrolase I, has been considered critical in sustaining NO production. In the present study, we examined time-dependent changes in iNOS and GTP cyclohydrolase I in rat cardiac allografts.

View Article and Find Full Text PDF

Cellular proliferation determines the events leading to the initiation and development of inflammation, immune activation, cancer, atherogenesis, and other disorders associated with aberrant cell proliferation. Cyclin inhibitor p21 plays a unique role in limiting cell cycle progression. However, its effectiveness can only be demonstrated with direct in vitro and in vivo delivery to control aberrant proliferation.

View Article and Find Full Text PDF

Reactive oxygen and nitrogen may mediate inflammation injury, but the status of the antioxidant defense system that might influence this process is unknown. In the present study, we examined the expression profile of the antioxidant enzymes, manganese superoxide dismutase (MnSOD), catalase and glutathione peroxidase (GPX) in acutely rejecting cardiac allografts and the potential role of inducible nitric oxide synthase (iNOS) in modulating antioxidant gene expression and activity. Donor hearts from Lewis (isograft) or Wistar-Furth (allograft) rats were transplanted into Lewis recipient rats.

View Article and Find Full Text PDF

Nitric oxide (NO) derived from inducible NO synthase has been implicated in cardiac rejection. However, little is known about the role of the reactive nitrogen species peroxynitrite. We examined the protective actions of a peroxynitrite decomposition catalyst, WW85, in an experimental model of acute cardiac rejection.

View Article and Find Full Text PDF

Spin-trapping nitrones such as alpha-phenyl-N-tert-butylnitrone (PBN) have traditionally been used to trap and stabilize free radicals for detection by electron paramagnetic resonance (EPR) spectroscopy. Unlike classical antioxidants, these agents have never been evaluated therapeutically in allograft transplantation. In the present study, we examined potential mechanisms of action of treatment with PBN in a rat model of acute cardiac allograft transplantation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionu4hnrugla07drmsne5bo471mjuoklnib): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once