Publications by authors named "Vanhoudt N"

We evaluate the impact of the radiological contamination of the Grote Nete catchment in Belgium to people and non-human biota. This region has received effluents from the phosphate and nuclear industries via tributaries of the Grote Nete river in past decades, resulting in the presence of radionuclides such as Am, Co, Cs, K, Pb, Pu, Pu, Ra, Ra, Th, Th, U, U and U. During the period 2016-2021, we measured these radionuclides in the water column, the bed sediment and riverbanks.

View Article and Find Full Text PDF

The uptake and effects of stable Cs and Co on L.minor were extensively studied, together with the effects of gamma radiation using a Cs or Co source. Innovative is that we combined external irradiation (from Cs or Co sources) with the direct uptake of certain amounts of stable Cs or Co to simulate the impact of the same mass of a radioisotope compared with that of the stable element.

View Article and Find Full Text PDF

Background: Appropriate use of available inpatient beds is an ongoing challenge for US hospitals. Historical capacity goals of 80% to 85% may no longer serve the intended purpose of maximizing the resources of space, staff, and equipment. Numerous variables affect the input, throughput, and output of a hospital.

View Article and Find Full Text PDF

Inpatient capacity constraints have been a pervasive challenge for hospitals throughout the COVID-19 pandemic. The Mayo Clinic Health System - Southwest Minnesota region primarily serves patients in rural southwestern Minnesota and part of Iowa and consists of 1 postacute care hospital, 1 tertiary care medical center, and 3 critical access hospitals. The main hub, Mayo Clinic Health System in Mankato, Minnesota, has a pediatric unit with dedicated pediatric hospitalists.

View Article and Find Full Text PDF

The "Sigma plan" https://www.sigmaplan.be/en/ aims to create in Belgium inundation zones along the Grote Nete river to prevent Antwerp from flooding in extreme weather conditions.

View Article and Find Full Text PDF

Pollution of surface waters is a worldwide problem for people and wildlife. Remediation and phytoremediation approaches can offer a solution to deal with specific scenarios. Lemna minor, commonly known as duckweed, can absorb and accumulate pollutants in its biomass.

View Article and Find Full Text PDF

The distribution and behaviour of naturally occurring radionuclides within a vegetated part of a CaF sludge heap from the Belgian phosphate industry was studied. A Scots pine forest plot was selected as study area. Trees were approximately 20 years old and showed a disturbed health state.

View Article and Find Full Text PDF

Microbial communities are essential for a healthy soil ecosystem. Metals and radionuclides can exert a persistent pressure on the soil microbial community. However, little is known on the effect of long-term co-contamination of metals and radionuclides on the microbial community structure and functionality.

View Article and Find Full Text PDF

The activity concentrations of U, Ra and Pb were modelled in Pinus sylvestris (Scots pine trees) on a uniform CaF sludge heap in Belgium. The aim of this work is to enhance the knowledge of how transfer factors behave in NORM landfills. The simplest possible model in radioecology is used, which is based on Concentration Ratios (CR-s) measured in equilibrium and activity concentrations of the above-mentioned radionuclides measured in the substrate where pine trees grow.

View Article and Find Full Text PDF

Ectomycorrhizal (EM) fungi form symbioses with dominant tree families in boreal, temperate and tropical ecosystems and are important drivers of ecosystem function. EM fungal hyphae extend over a large area making them susceptible to enhanced radiation levels from naturally occurring or anthropogenically originating radioisotopes in the rhizosphere. In this study, the in-vitro effects of ionizing radiation on the growth and biomass of EM fungi Suillus luteus, S.

View Article and Find Full Text PDF

This study aimed to compare the potential of Lemna minor, Spirodela sp., Eichhornia crassipes and Pistia stratiotes to remove Co from a realistic aquatic environment. Although all four plant species performed similarly well after 3 days of exposure to 50 kBq LCo, Lemna minor and Spirodela sp.

View Article and Find Full Text PDF

The potential of photosynthetic organisms to remediate radioactively contaminated water was evaluated for scenarios related to nuclear installations and included the following radionuclides: Cs, Cs, Cs, Sr, I, Pu, Am, Te/I, Co, Co, Cr, Ag, Mn, Sb, Fe, Zn, Zr, and Nb. An extensive literature review was undertaken leading to the creation of a database including more than 20,000 entries from over 100 references in which terrestrial and aquatic plants, macro- and microalgae, cyanobacteria and biosorbents derived from these organisms were used to clean water from these specific radionuclides or their stable isotopes. In a first phase, the remediation potential of the organisms and biosorbents was evaluated for the individual elements based on parameters such as plant uptake, removal percentage, and bioconcentration factor, and for two radionuclide mixtures based on the ability of the organisms/biosorbents to work under mixture conditions.

View Article and Find Full Text PDF

We assessed the potential impact of using coal fly ash to stabilise roadway pavements on groundwater quality and human health. The leaching potential of naturally occurring radionuclides (NORs) typically present in the fly ash was assessed with the HYDRUS-1D code and data representative of a segment of the Wisconsin State Trunk Highway 60 as a case study. Our assessment suggests that the impact would be mainly from the chemical toxicity of uranium (U).

View Article and Find Full Text PDF

Long-lived radionuclides such as (90)Sr and (137)Cs can be naturally or accidentally deposited in the upper soil layers where they emit β/γ radiation. Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can accumulate and transfer radionuclides from soil to plant, but there have been no studies on the direct impact of ionizing radiation on AMF. In this study, root organ cultures of the AMF Rhizophagus irregularis MUCL 41833 were exposed to 15.

View Article and Find Full Text PDF

Anthropogenic activities have led to a widespread uranium (U) contamination in many countries. The toxic effects of U at the cellular level have mainly been investigated at a pH around 5.5, the optimal pH for hydroponically grown plants.

View Article and Find Full Text PDF

Human activity has led to an increasing amount of radionuclides in the environment and subsequently to an increased risk of exposure of the biosphere to ionising radiation. Due to their high linear energy transfer, α-emitters form a threat to biota when absorbed or integrated in living tissue. Among these, (241)Am is of major concern due to high affinity for organic matter and high specific activity.

View Article and Find Full Text PDF

To evaluate the environmental impact of uranium (U) contamination, it is important to investigate the effects of U at ecologically relevant conditions. Since U speciation, and hence its toxicity, strongly depends on environmental pH, the present study aimed to investigate dose-dependent effects of U at pH 7.5.

View Article and Find Full Text PDF

To study the impact of environmental uranium (U) contamination, effects should be analysed at different environmentally relevant pH levels as the speciation of U, and hence its toxicity, is strongly dependent on the pH. As photosynthesis is a major energy producing process in plants intimately connected to plant growth and known to be susceptible to metal stress, the effects of different U concentrations on photosynthesis in 18-day-old Arabidopsis thaliana (Columbia ecotype) are investigated at two contrasting pH levels, pH 4.5 and pH 7.

View Article and Find Full Text PDF

Two sequential extraction procedures were carried out on six soils with different chemical properties and contamination history to estimate the partitioning of uranium (U) between different soil fractions. The first standard method (method of Schultz) was specifically developed for actinides, while the second one (method of Rauret) was initially created for heavy metals. Reproducibility of both methods was compared by means of the coefficient of variation (CV).

View Article and Find Full Text PDF

As the environment is inevitably exposed to ionizing radiation from natural and anthropogenic sources, it is important to evaluate gamma radiation induced stress responses in plants. The objective of this research is therefore to investigate radiation effects in Arabidopsis thaliana on individual and subcellular level by exposing 2-weeks-old seedlings for 7 days to total doses of 3.9 Gy, 6.

View Article and Find Full Text PDF

Uranium (U) causes oxidative stress in Arabidopsis thaliana plants grown at pH 5.5. However, U speciation and its toxicity strongly depend on environmental parameters, for example pH.

View Article and Find Full Text PDF

There is a need for a better understanding of biological effects of radiation exposure in non-human biota. Correct description of these effects requires a more detailed model of dosimetry than that available in current risk assessment tools, particularly for plants. In this paper, we propose a simple model for dose calculations in roots and shoots of Arabidopsis thaliana seedlings exposed to radionuclides in a hydroponic exposure setup.

View Article and Find Full Text PDF

Studies were reviewed that investigated the combined effects of ionising radiation and other stressors on non-human biota. The aim was to determine the state of research in this area of science, and determine if a review of the literature might permit a gross generalization as to whether the combined effects of multi-stressors and radiation are fundamentally additive, synergistic or antagonistic. A multiple stressor database was established for different organism groups.

View Article and Find Full Text PDF

The cellular redox balance seems an important modulator under heavy metal stress. While for other heavy metals these processes are well studied, oxidative stress related responses are also known to be triggered under uranium stress but information remains limited. This study aimed to further unravel the mechanisms by which plants respond to uranium stress.

View Article and Find Full Text PDF