Publications by authors named "Vanessa Wiggermann"

Background And Objectives: Cortical lesions contribute to disability in multiple sclerosis (MS), but their impact on regional neurotransmitter levels remains to be clarified. We tested the hypothesis that cortical lesions are associated with regional glutamate and gamma-aminobutyric acid (GABA) concentrations within the affected cortical region.

Methods: In this cross-sectional study, we used structural 7T MRI to segment cortical lesions and 7T proton MR-spectroscopy of the bilateral sensorimotor hand areas to quantify regional GABA, glutamate, -acetylaspartate, and myoinositol concentrations in patients with MS (inclusion criteria: diagnosis of relapsing-remitting [RR] or secondary progressive MS [SPMS]; age 18-80 years) and age and sex-matched healthy controls.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) of focal or diffuse myelin damage or remyelination may provide important insights into disease progression and potential treatment efficacy in multiple sclerosis (MS). We performed post-mortem MRI and histopathological myelin measurements in seven progressive MS cases to evaluate the ability of three myelin-sensitive MRI scans to distinguish different stages of MS pathology, particularly chronic demyelinated and remyelinated lesions. At 3 Tesla, we acquired two different myelin water imaging (MWI) scans and magnetisation transfer ratio (MTR) data.

View Article and Find Full Text PDF

Cortical lesions constitute a key manifestation of multiple sclerosis and contribute to clinical disability and cognitive impairment. Yet it is unknown whether local cortical lesions and cortical lesion subtypes contribute to domain-specific impairments attributable to the function of the lesioned cortex. In this cross-sectional study, we assessed how cortical lesions in the primary sensorimotor hand area relate to corticomotor physiology and sensorimotor function of the contralateral hand.

View Article and Find Full Text PDF

Background: A large proportion of Alzheimer's disease (AD) patients have coexisting subcortical vascular dementia (SVaD), a condition referred to as mixed dementia (MixD). Brain imaging features of MixD presumably include those of cerebrovascular disease and AD pathology, but are difficult to characterize due to their heterogeneity.

Objective: To perform an exploratory analysis of conventional and non-conventional structural magnetic resonance imaging (MRI) abnormalities in MixD and to compare them to those observed in AD and SVaD.

View Article and Find Full Text PDF

Background: Cortical lesions are abundant in multiple sclerosis (MS), yet difficult to visualize in vivo. Ultra-high field (UHF) MRI at 7 T and above provides technological advances suited to optimize the detection of cortical lesions in MS.

Purpose: To provide a narrative and quantitative systematic review of the literature on UHF MRI of cortical lesions in MS.

View Article and Find Full Text PDF

Introduction: Multi-component T mapping using a gradient- and spin-echo (GraSE) acquisition has become standard for myelin water imaging at 3 T. Higher magnetic field strengths promise signal-to-noise ratio benefits but face specific absorption rate limits and shortened T times. This study investigates compartmental T times in vivo and addresses advantages and challenges of multi-component T mapping at 7 T.

View Article and Find Full Text PDF

Purpose: Myelin water imaging (MWI) provides a valuable biomarker for myelin, but clinical application has been restricted by long acquisition times. Accelerating the standard multi-echo T acquisition with gradient echoes (GRASE) or by 2D multi-slice data collection results in image blurring, contrast changes, and other issues. Compressed sensing (CS) can vastly accelerate conventional MRI.

View Article and Find Full Text PDF

Background And Purpose: Cognitive impairment is a core symptom in multiple sclerosis (MS). Damage to normal appearing white matter (NAWM) is likely involved. We sought to determine if greater myelin heterogeneity in NAWM is associated with decreased cognitive performance in MS.

View Article and Find Full Text PDF

Objective: Running is an easy way of meeting physical activity recommendations for individuals with knee osteoarthritis (KOA); however, it remains unknown how their cartilage reacts to running. The objective of this pilot study was to compare the effects of 30 min of running on T2 and T1ρ relaxation times of tibiofemoral cartilage in female runners with and without KOA.

Methods: Ten female runners with symptomatic KOA (mean age 52.

View Article and Find Full Text PDF

Brain myelin and iron content are important parameters in neurodegenerative diseases such as multiple sclerosis (MS). Both myelin and iron content influence the brain's R relaxation rate. However, their quantification based on R maps requires a realistic tissue model that can be fitted to the measured data.

View Article and Find Full Text PDF

Radiation necrosis mostly occurs in and near the radiation field. We used magnetic resonance imaging to study radiation-induced necrosis of atypical onset, severity, and extent following stereotactic radiosurgery for a symptomatic arteriovenous malformation. Susceptibility-sensitive imaging, T-relaxation, myelin water imaging, and magnetic resonance spectroscopy were acquired three times up to 52 months postradiosurgery.

View Article and Find Full Text PDF

Background: Magnetic resonance relaxometry studies in multiple sclerosis (MS) have suggested that iron accumulates within deep gray matter (DGM) structures early in the disease course. However, the commonly utilized mean R2* and magnetic susceptibility measures reflect regional iron concentration but not a structure's total iron content. Thus, tissue atrophy could impact mean R2* and magnetic susceptibility estimates.

View Article and Find Full Text PDF

Quantitative susceptibility mapping (QSM) is a post-processing technique of gradient echo phase data that attempts to map the spatial distribution of local tissue magnetic susceptibilities. To obtain these maps, an ill-posed field-to-source inverse problem must be solved to remove non-local magnetic field perturbations. Current state-of-the-art algorithms which aim to solve the dipole inversion problem are plagued by the trade-off between reconstruction speed and accuracy.

View Article and Find Full Text PDF

Susceptibility-sensitive magnetic resonance imaging (MRI) has gained importance in multiple sclerosis (MS) research because of its versatility, high resolution and excellent sensitivity to changes in tissue structure and composition. In particular, mapping of the resonance frequency of the MR signal and quantitative susceptibility mapping (QSM) have been explored for the description of MS lesions. Many current studies utilizing these techniques attribute increases in the MR frequency or QSM to elevated tissue iron content, in addition to myelin loss.

View Article and Find Full Text PDF

Purpose: To visualize healthy and abnormal articular cartilage, we investigated the potential of using the 3D multi-echo gradient echo (GRE) signal's magnitude and frequency and maps of T2* relaxation.

Materials And Methods: After optimizing imaging parameters in five healthy volunteers, 3D multi-echo GRE magnetic resonance (MR) images were acquired at 3T in four patients with chondral damage prior to their arthroscopic surgery. Average magnitude and frequency information was extracted from the GRE images, and T2* maps were generated.

View Article and Find Full Text PDF

Measurements of cerebral perfusion using dynamic susceptibility contrast magnetic resonance imaging rely on the assumption of isotropic vascular architecture. However, a considerable fraction of vessels runs in parallel with white matter tracts. Here, we investigate the effects of tissue orientation on dynamic susceptibility contrast magnetic resonance imaging.

View Article and Find Full Text PDF

R2* relaxometry of the brain is a quantitative magnetic resonance technique which is influenced by iron and myelin content across different brain regions. Multiple sclerosis (MS) is a common inflammatory, demyelinating disease affecting both white and grey matter regions of the CNS. Using R2*, increased iron deposition has been described in deep gray matter of MS patients.

View Article and Find Full Text PDF

Objective: We investigated the evolution of new multiple sclerosis (MS) lesions over time using frequency shifts of the magnetic resonance (MR) signal.

Methods: Twenty patients with relapsing-remitting MS were serially scanned for 6 months at 1-month intervals. Maps of MR frequency shifts were acquired using susceptibility-weighted imaging.

View Article and Find Full Text PDF