Human immunodeficiency virus-associated neurocognitive disorders persist in the combination antiretroviral therapy era. CD4 nadir is a well-established predictor of cognition cross-sectionally, but its impact on longitudinal neurocognitive (NC) trajectories is unclear. The few studies on this topic examined trajectories of global cognition, rather than specific NC domains.
View Article and Find Full Text PDFSignificance: Existing screening tools for HIV-associated neurocognitive disorders (HAND) are often clinically impractical for detecting milder forms of impairment. The formal diagnosis of HAND requires an assessment of both cognition and impairment in activities of daily living (ADL). To address the critical need for identifying patients who may have disability associated with HAND, we implemented a low-cost screening tool, the Virtual Driving Test (VDT) platform, in a vulnerable cohort of people with HIV (PWH).
View Article and Find Full Text PDFThe CRISPR/Cas9 system has been proposed as a cure strategy for HIV. However, few published guide RNAs (gRNAs) are predicted to cleave the majority of HIV-1 viral quasispecies (vQS) observed within and among patients. We report the design of a novel pipeline to identify gRNAs that target HIV across a large number of infected individuals.
View Article and Find Full Text PDFHuman immunodeficiency virus type 1 (HIV-1) encodes for Tat, a multi-functional regulatory protein involved in transcriptional enhancement and in causing neurotoxicity/central nervous system (CNS) dysfunction. This study examines Sanger sequencing of HIV-1 subtype B Tat from 2006 to 2014 within the Drexel University College of Medicine CNS AIDS Research and Eradication Study (CARES) Cohort to investigate Tat length in patients. The Los Alamos National Laboratory (LANL) database was used as a comparator.
View Article and Find Full Text PDFAIDS Res Hum Retroviruses
November 2018
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas9 system has been used to excise the HIV-1 proviral genome from latently infected cells, potentially offering a cure for HIV-infected patients. Recent studies have shown that most published HIV-1 guide RNAs (gRNAs) do not account for the diverse viral quasispecies within or among patients, which continue to diversify with time even in long-term antiretroviral therapy (ART)-suppressed patients. Given this observation, proviral genomes were deep sequenced from 23 HIV-1-infected patients in the Drexel Medicine CNS AIDS Research and Eradication Study cohort at two different visits.
View Article and Find Full Text PDFTo address the urgent need for new agents to reduce the global occurrence and spread of AIDS, we investigated the underlying hypothesis that antagonists of the HIV-1 envelope (Env) gp120 protein and the host-cell coreceptor (CoR) protein can be covalently joined into bifunctional synergistic combinations with improved antiviral capabilities. A synthetic protocol was established to covalently combine a CCR5 small-molecule antagonist and a gp120 peptide triazole antagonist to form the bifunctional chimera. Importantly, the chimeric inhibitor preserved the specific targeting properties of the two separate chimera components and, at the same time, exhibited low to subnanomolar potencies in inhibiting cell infection by different pseudoviruses, which were substantially greater than those of a noncovalent mixture of the individual components.
View Article and Find Full Text PDFPrevious studies have identified a CCAAT/enhancer binding protein (C/EBP) site located downstream of the transcriptional start site (DS3). The role of the DS3 element with respect to HIV-1 transactivation by Tat and viral replication has not been characterized. We have demonstrated that DS3 was a functional C/EBPβ binding site and mutation of this site to the C/EBP knockout DS3-9C variant showed lower HIV-1 long terminal repeat (LTR) transactivation by C/EBPβ.
View Article and Find Full Text PDFVpr is an HIV-1 accessory protein that plays numerous roles during viral replication, and some of which are cell type dependent. To test the hypothesis that HIV-1 tropism extends beyond the envelope into the gene, studies were performed to identify the associations between coreceptor usage and Vpr variation in HIV-1-infected patients. Colinear HIV-1 Env-V3 and Vpr amino acid sequences were obtained from the LANL HIV-1 sequence database and from well-suppressed patients in the Drexel/Temple Medicine CNS AIDS Research and Eradication Study (CARES) Cohort.
View Article and Find Full Text PDFCD34 hematopoietic progenitor cells have been shown to be susceptible to HIV-1 infection, possibly due to a low-level expression of CXCR4, a coreceptor for HIV-1 entry. Given these observations, we have explored the impact of forskolin on cell surface expression of CXCR4 in a cell line model (TF-1). The elevation of intracellular cyclic adenosine monophosphate (cAMP) by forskolin through adenylyl cyclase (AC) resulted in transcriptional upregulation of CXCR4 with a concomitant increase in replication of the CXCR4-utilizing HIV-1 strain IIIB.
View Article and Find Full Text PDFEvolutionary divergence of the mitochondrial genome has given rise to distinct haplogroups. These haplogroups have arisen in specific geographical locations and are responsible for subtle functional changes in the mitochondria that may provide an evolutionary advantage in a given environment. Based on these functional differences, haplogroups could define disease susceptibility in chronic settings.
View Article and Find Full Text PDFEven in the era of combination antiretroviral therapies used to combat human immunodeficiency virus type 1 (HIV-1) infection, up to 50 % of well-suppressed HIV-1-infected patients are still diagnosed with mild neurological deficits referred to as HIV-associated neurocognitive disorders (HAND). The multifactorial nature of HAND likely involves the HIV-1 accessory protein viral protein R (Vpr) as an agent of neuropathogenesis. To investigate the effect of naturally occurring variations in Vpr on HAND in well-suppressed HIV-1-infected patients, bioinformatic analyses were used to correlate peripheral blood-derived Vpr sequences with patient neurocognitive performance, as measured by comprehensive neuropsychological assessment and the resulting Global Deficit Score (GDS).
View Article and Find Full Text PDFThe blood-brain barrier (BBB) has been defined as a critically important protective barrier that is involved in providing essential biologic, physiologic, and immunologic separation between the central nervous system (CNS) and the periphery. Insults to the BBB can cause overall barrier damage or deregulation of the careful homeostasis maintained between the periphery and the CNS. These insults can, therefore, yield numerous phenotypes including increased overall permeability, interendothelial gap formation, alterations in cytokine and chemokine secretion, and accelerated cellular passage.
View Article and Find Full Text PDFBackground: Numerous systems exist to model the blood-brain barrier (BBB) with the goal of understanding the regulation of passage into the central nervous system (CNS) and the potential impact of selected insults on BBB function. These models typically focus on the intrinsic cellular properties of the BBB, yet studies of peripheral cell migration are often excluded due to technical restraints.
New Method: This method allows for the study of in vitro cellular transmigration following exposure to any treatment of interest through optimization of co-culture conditions for the human brain microvascular endothelial cells (BMEC) cell line, hCMEC/D3, and primary human peripheral blood mononuclear cells (PBMCs).
As a result of antiretroviral therapeutic strategies, human immunodeficiency virus type 1 (HIV-1) infection has become a long-term clinically manageable chronic disease for many infected individuals. However, despite this progress in therapeutic control, including undetectable viral loads and CD4+ T-cell counts in the normal range, viral mutations continue to accumulate in the peripheral blood compartment over time, indicating either low level reactivation and/or replication. Using patients from the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort, whom have been sampled longitudinally for more than 7 years, genetic change was modeled against to the dominant integrated proviral quasispecies with respect to selection pressures such as therapeutic interventions, AIDS defining illnesses, and other factors.
View Article and Find Full Text PDFBackground: HIV-1 entry is a receptor-mediated process directed by the interaction of the viral envelope with the host cell CD4 molecule and one of two co-receptors, CCR5 or CXCR4. The amino acid sequence of the third variable (V3) loop of the HIV-1 envelope is highly predictive of co-receptor utilization preference during entry, and machine learning predictive algorithms have been developed to characterize sequences as CCR5-utilizing (R5) or CXCR4-utilizing (X4). It was hypothesized that while the V3 loop is predominantly responsible for determining co-receptor binding, additional components of the HIV-1 genome may contribute to overall viral tropism and display sequence signatures associated with co-receptor utilization.
View Article and Find Full Text PDFThe large majority of human immunodeficiency virus type 1 (HIV-1) markers of disease progression/severity previously identified have been associated with alterations in host genetic and immune responses, with few studies focused on viral genetic markers correlate with changes in disease severity. This study presents a cross-sectional/longitudinal study of HIV-1 single nucleotide polymorphisms (SNPs) contained within the viral promoter or long terminal repeat (LTR) in patients within the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. HIV-1 LTR SNPs were found to associate with the classical clinical disease parameters CD4+ T-cell count and log viral load.
View Article and Find Full Text PDFBackground: It is well established that antiretroviral therapy (ART), while highly effective in controlling HIV replication, cannot eliminate virus from the body. Therefore, the majority of HIV-1-infected individuals remain at risk for developing AIDS due to persistence of infected reservoir cells serving as a source of virus re-emergence. Several reservoirs containing replication competent HIV-1 have been identified, most notably CD4+ T cells.
View Article and Find Full Text PDFIn many individuals, drug abuse is intimately linked with HIV-1 infection. In addition to being associated with one-third of all HIV-1 infections in the United States, drug abuse also plays a role in disease progression and severity in HIV-1-infected patients, including adverse effects on the central nervous system (CNS). Specific systems within the brain are known to be damaged in HIV-1-infected individuals and this damage is similar to that observed in drug abuse.
View Article and Find Full Text PDFDuring the course of human immunodeficiency virus type 1 infection, a number of cell types throughout the body are infected, with the majority of cells representing CD4+ T cells and cells of the monocyte-macrophage lineage. Both types of cells express, to varying levels, the primary receptor molecule, CD4, as well as one or both of the coreceptors, CXCR4 and CCR5. Viral tropism is determined by both the coreceptor utilized for entry and the cell type infected.
View Article and Find Full Text PDFFollowing human immunodeficiency virus type 1 (HIV-1) integration into host cell DNA, the viral promoter can become transcriptionally silent in the absence of appropriate signals and factors. HIV-1 gene expression is dependent on regulatory elements contained within the long terminal repeat (LTR) that drive the synthesis of viral RNAs and proteins through interaction with multiple host and viral factors. Previous studies identified single nucleotide polymorphisms (SNPs) within CCAAT/enhancer binding protein (C/EBP) site I and Sp site III (3T, C-to-T change at position 3, and 5T, C-to-T change at position 5 of the binding site, respectively, when compared to the consensus B sequence) that are low affinity binding sites and correlate with more advanced stages of HIV-1 disease.
View Article and Find Full Text PDFBackground: Approximately one-third of the AIDS cases in the United States have been attributed to the use of injected drugs, frequently involving the abuse of opioids. Consequently, it is critical to address whether opioid use directly contributes to altered susceptibility to HIV-1 beyond the increased risk of exposure. Previous in vitro and in vivo studies addressing the role of μ-opioid agonists in altering levels of the co-receptor CXCR4 and subsequent HIV-1 replication have yielded contrasting results.
View Article and Find Full Text PDFThe adaptation of human immunodeficiency virus type-1 (HIV-1) to an array of physiologic niches is advantaged by the plasticity of the viral genome, encoded proteins, and promoter. CXCR4-utilizing (X4) viruses preferentially, but not universally, infect CD4+ T cells, generating high levels of virus within activated HIV-1-infected T cells that can be detected in regional lymph nodes and peripheral blood. By comparison, the CCR5-utilizing (R5) viruses have a greater preference for cells of the monocyte-macrophage lineage; however, while R5 viruses also display a propensity to enter and replicate in T cells, they infect a smaller percentage of CD4+ T cells in comparison to X4 viruses.
View Article and Find Full Text PDFBackground: HIV-1 gene expression is driven by the long terminal repeat (LTR), which contains many binding sites shown to interact with an array of host and viral factors. Selective pressures within the host as well as the low fidelity of reverse transcriptase lead to changes in the relative prevalence of genetic variants within the HIV-1 genome, including the LTR, resulting in viral quasispecies that can be differentially regulated and can potentially establish niches within specific cell types and tissues.
Methods: Utilizing flow cytometry and electromobility shift assays, specific single-nucleotide sequence polymorphisms (SNPs) were shown to alter both the phenotype of LTR-driven transcription and reactivation.