The main target for the future of materials in dentistry aims to develop dental implants that will have optimal integration with the surrounding tissues, while preventing or avoiding bacterial infections. In this project, poly(ether ether ketone) (PEEK), known for its suitable biocompa-tibility and mechanical properties for dental applications, was loaded with 1, 3, and 5 wt.% ZnO nanoparticles to provide antibacterial properties and improve interaction with cells.
View Article and Find Full Text PDFStents are cardiovascular devices used to treat atherosclerosis, and are deployed into narrowed arteries and implanted by expansion to reopen the biological lumen. Nevertheless, complications after implantation are still observed in 10-14% of the implantations. Therefore, functionalizing these devices with active molecules to improve the interfacial effects with the surrounding tissue strongly impacts their success.
View Article and Find Full Text PDFCoatings for medical devices are expected to improve their surface biocompatibility mainly by being bioactive, i.e. stimulating healing-oriented interactions with living cells, tissues and organs.
View Article and Find Full Text PDFAfter the introduction of a medical device into the body, adhesive proteins such as fibronectin (Fn) will adsorb to the surface of the biomaterial. Monocytes (MCs) will interact with these adsorbed proteins, and adopt either a proinflammatory and/or prowound healing phenotype, thereby influencing many blood interaction events including thrombogenesis. In this work, Fn adsorption as well as subsequent MC response and thrombus formation were investigated on two surfaces-modified polyetherurethanes (PEUs) using different surface modifiers: an anionic/dihydroxyl oligomeric (ADO) additive, known to enable cell adhesion, and a fluorinated polypropylene oxide oligomer (PPO), known to reduce platelet adhesion.
View Article and Find Full Text PDFThe use of biomolecules as coatings on biomaterials is recognized to constitute a promising approach to modulate the biological response of the host. In this work, we propose a coating composed by 2 biomolecules susceptible to provide complementary properties for cardiovascular applications: fibronectin (FN) to enhance endothelialization, and phosphorylcholine (PRC) for its non thrombogenic properties. Polytetrafluoroethylene (PTFE) was selected as model substrate mainly because it is largely used in cardiovascular applications.
View Article and Find Full Text PDFThe modification of biomaterial surfaces with biomolecules influences the biological response. In this work, caboxymethyldextrans (CMD) with different degrees of substitution have been grafted to surfaces by introduction of amino moieties directly onto the substrate surface. Polytetrafluoroethylene was selected as a model substrate for biomaterial as it is already largely used for cardiovascular clinical applications.
View Article and Find Full Text PDF