The consumption of extra virgin olive oil (EVOO) has been linked to various health benefits, including a reduced risk of cardiovascular disease. EVOO contains triglycerides and unsaturated fatty acids, as well as minor compounds, such as polar phenols and tocopherols, which play a crucial nutritional and biological role. The composition of these minor compounds is affected by various factors that distinguish EVOOs from lower-quality olive oils.
View Article and Find Full Text PDFThe development of effective shelf-life prediction models is extremely important for the olive oil industry. This research is the continuation of a previous accelerated shelf-life test at mild temperature (40-60 °C), applied in this case to evaluate the oxidation effect of temperature on minor components (phenols, tocopherol, pigments) to properly complete a shelf-life predictive model. The kinetic behaviour of phenolic compounds, α-tocopherol and pigments during storage of different virgin olive oil samples at different temperatures (25-60 °C) is reported.
View Article and Find Full Text PDFThe individual and combined antioxidant and antiradical capacity of the main minor compounds of virgin olive oil (α-tocopherol, hydroxytyrosol, tyrosol and oleuropein aglycone) spiked in Purified Olive Oil (POO) as the lipid matrix model is described. The antioxidant activity was assessed under mild temperature conditions (25 and 40°C) to mimic the autoxidation process during real storage conditions. These results were compared with accelerated (Rancimat Induction Period) and antiradical (DPPH) tests.
View Article and Find Full Text PDFOxidative stability should be one of the most important quality markers of edible oils; nevertheless, it is not recognized as a legal parameter. The results reported in this study highlight the differences in the olive oil oxidation process under Rancimat accelerated conditions with respect to long-term storage at room temperature and clearly show the lack of correlation between shelf life and the Rancimat induction period. A better correlation, although not yet satisfactory, was found when the same oxidation end-point was used in both assays.
View Article and Find Full Text PDFThe hydrophilic extract of virgin olive oil contains several phenolic compounds such as simple phenols, lignans, and secoiridoids that have been widely studied in recent years. Interest in the hydrophilic extract has also been extended to the fraction of oxidized phenols that form during storage as a consequence of oxidative stress. The present investigation compares the two most commonly used extraction methods, namely liquid-liquid extraction and SPE, on fresh virgin olive oil and that kept at different temperatures in the presence of oxygen to promote the formation of oxidative products.
View Article and Find Full Text PDF