Objective: This study was undertaken to compare the rate of change in cognition between glucocerebrosidase (GBA) mutation carriers and noncarriers with and without subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson disease.
Methods: Clinical and genetic data from 12 datasets were examined. Global cognition was assessed using the Mattis Dementia Rating Scale (MDRS).
Objectives: Minimally conscious state (MCS) is a disorder of consciousness in which minimal but definite behavioral evidence of self-awareness or environmental awareness is demonstrated. Deep brain stimulation (DBS) of various targets has been used to promote recovery in patients with disorders of consciousness with varying results. The aim of this systematic review was to assess the effects of DBS in MCS following traumatic brain injury (TBI).
View Article and Find Full Text PDFBackground: Recent evidence suggests that glucosidase beta acid (GBA) mutations predispose Parkinson's disease (PD) patients to a greater burden of cognitive impairment and non-motor symptoms. This emerging knowledge has not yet been considered in patients who have undergone deep brain stimulation (DBS); a surgery that is generally contraindicated in those with cognitive deficits.
Objective: To explore the long-term phenotypic progression of GBA-associated PD, in a DBS cohort.