Publications by authors named "Vanessa Lagal"

To invade cells, the parasite Toxoplasma gondii injects a multi-unit nanodevice into the target cell plasma membrane (PM). The core nanodevice, which is composed of the RhOptry Neck (RON) protein complex, connects Toxoplasma and host cell through a circular tight junction (TJ). We now report that this RON nanodevice mechanically promotes membrane scission at the TJ-PM interface, directing a physical rotation driven by the parasite twisting motion that enables the budding parasitophorous vacuole (PV) to seal and separate from the host cell PM as a bona fide subcellular Toxoplasma-loaded PV.

View Article and Find Full Text PDF

The apical membrane antigen 1 (AMA1) protein was believed to be essential for the perpetuation of two Apicomplexa parasite genera, Plasmodium and Toxoplasma, until we genetically engineered viable parasites lacking AMA1. The reduction in invasiveness of the Toxoplasma gondii RH-AMA1 knockout (RH-AMA1(KO)) tachyzoite population, in vitro, raised key questions about the outcome associated with these tachyzoites once inoculated in the peritoneal cavity of mice. In this study, we used AMNIS technology to simultaneously quantify and image the parasitic process driven by AMA1(KO) tachyzoites.

View Article and Find Full Text PDF

Background: The public health threats imposed by toxoplasmosis worldwide and by malaria in sub-Saharan countries are directly associated with the capacity of their related causative agents Toxoplasma and Plasmodium, respectively, to colonize and expand inside host cells. Therefore, deciphering how these two Apicomplexan protozoan parasites access their host cells has been highlighted as a priority research with the perspective of designing anti-invasive molecules to prevent diseases. Central to the mechanism of invasion for both genera is mechanical force, which is thought to be applied by the parasite at the interface between the two cells following assembly of a unique cell-cell junction but this model lacks direct evidence and has been challenged by recent genetic studies.

View Article and Find Full Text PDF

Cancer cells have an increased ability to squeeze through extracellular matrix gaps that they create by promoting proteolysis of its components. Major sites of degradation are specialized micro-domains in the plasma membrane collectively named invadosomes where the Arp2/3 complex and formin proteins cooperate to spatio-temporally control actin nucleation and the folding of a dynamic F-actin core. At invadosomes, proper coupling of exo-endocytosis allows polarized delivery of proteases that facilitate degradation of ECM and disruption of the cellular barrier.

View Article and Find Full Text PDF

Apicomplexan parasites invade host cells by forming a ring-like junction with the cell surface and actively sliding through the junction inside an intracellular vacuole. Apical membrane antigen 1 is conserved in apicomplexans and a long-standing malaria vaccine candidate. It is considered to have multiple important roles during host cell penetration, primarily in structuring the junction by interacting with the rhoptry neck 2 protein and transducing the force generated by the parasite motor during internalization.

View Article and Find Full Text PDF

Toxoplasma gondii, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the formation of a parasite-cell junction, and progressively propels itself through the junction, inside a newly formed vacuole that encloses the entering parasite. Little is known about how a parasite that is a few microns in diameter overcomes the host cell cortical actin barrier to achieve the remarkably rapid process of internalization (less than a few seconds).

View Article and Find Full Text PDF

Apicomplexan zoites enter host cells by forming and actively moving through a tight junction (TJ) formed between the parasite and host cell surfaces. Although the TJ was first described decades ago, its molecular characterization has proved difficult mainly because of its transient existence during an internalization process that lasts only seconds. In the past 7 years, work has led to a model of the TJ in which the association between AMA1 and RON proteins structures the TJ and bridges the cytoskeletons of the two cells.

View Article and Find Full Text PDF

During invasion, apicomplexan parasites form an intimate circumferential contact with the host cell, the tight junction (TJ), through which they actively glide. The TJ, which links the parasite motor to the host cell cytoskeleton, is thought to be composed of interacting apical membrane antigen 1 (AMA1) and rhoptry neck (RON) proteins. Here we find that, in Plasmodium berghei, while both AMA1 and RON4 are important for merozoite invasion of erythrocytes, only RON4 is required for sporozoite invasion of hepatocytes, indicating that RON4 acts independently of AMA1 in the sporozoite.

View Article and Find Full Text PDF

Host cell invasion by Toxoplasma gondii is critically dependent upon adhesive proteins secreted from the micronemes. Proteolytic trimming of microneme contents occurs rapidly after their secretion onto the parasite surface and is proposed to regulate adhesive complex activation to enhance binding to host cell receptors. However, the proteases responsible and their exact function are still unknown.

View Article and Find Full Text PDF

Subtilisin-like proteases have been proposed to play an important role for parasite survival in Toxoplasma gondii (Tg) and Plasmodium falciparum. The T. gondii subtilase TgSUB1 is located in the microneme, an apical secretory organelle whose contents mediate adhesion to the host during invasion.

View Article and Find Full Text PDF

Borrelia burgdorferi sensu lato, the causative agent of Lyme borreliosis, is transmitted through tick bite. Lyme borreliosis evolves in two stages: a primary red skin lesion called erythema migrans; later on, invasive bacteria disseminate to distant sites inducing secondary manifestations (neuropathies, arthritis, carditis, late skin disorders). It has been previously suggested that the ospC gene could be associated with invasiveness in humans depending on its sequence.

View Article and Find Full Text PDF

Lyme borreliosis (LB) is a tick-borne spirochetal infection caused by three Borrelia species: Borrelia afzelii, B. garinii, and B. burgdorferi sensu stricto.

View Article and Find Full Text PDF

Lyme borreliosis is a 2 steps disease: i) Localized erythema migrans ii) occasionally a disseminated disease. Three out of the 10 up to now described Borrelia species are pathogenic for man and each of them exhibits its own organotropism: joints for Borrelia burgdorferi sensu stricto (B.b.

View Article and Find Full Text PDF