Ferroptosis is an iron-dependent form of cell death driven by biochemical processes that promote oxidation within the lipid compartment. Calcium (Ca) is a signaling molecule in diverse cellular processes such as migration, neurotransmission, and cell death. Here, we uncover a crucial link between ferroptosis and Ca through the identification of the novel tetraspanin MS4A15.
View Article and Find Full Text PDFTrehalose, a sugar from fungi, mimics starvation due to a block of glucose transport and induces Transcription Factor EB- mediated autophagy, likely supported by the upregulation of progranulin. The pro-autophagy effects help to remove pathological proteins and thereby prevent neurodegenerative diseases such as Alzheimer's disease. Enhancing autophagy also contributes to the resolution of neuropathic pain in mice.
View Article and Find Full Text PDFNonsense-mediated decay (NMD) proteins are responsible for the surveillance and degradation of aberrant RNAs. Suppressor with morphogenetic effect on genitalia 7 (SMG7) is an NMD complex protein and a regulator of tumor necrosis factor (TNF)-induced extrinsic apoptosis; however, this unique function has not been explored in detail. In this study, we show that loss of Smg7 leads to unrestricted expression of long noncoding RNAs (lncRNAs) in addition to NMD targets.
View Article and Find Full Text PDFFerroptosis is an iron-dependent form of regulated cell death linking iron, lipid, and glutathione levels to degenerative processes and tumor suppression. By performing a genome-wide activation screen, we identified a cohort of genes antagonizing ferroptotic cell death, including GTP cyclohydrolase-1 (GCH1) and its metabolic derivatives tetrahydrobiopterin/dihydrobiopterin (BH/BH). Synthesis of BH/BH by GCH1-expressing cells caused lipid remodeling, suppressing ferroptosis by selectively preventing depletion of phospholipids with two polyunsaturated fatty acyl tails.
View Article and Find Full Text PDF