Background: Lameness in dairy cattle is primarily caused by foot lesions including the claw horn lesions (CHL) of sole haemorrhage (SH), sole ulcers (SU), and white line disease (WL). This study investigated the genetic architecture of the three CHL based on detailed animal phenotypes of CHL susceptibility and severity. Estimation of genetic parameters and breeding values, single-step genome-wide association analyses, and functional enrichment analyses were performed.
View Article and Find Full Text PDFBackground: The management of farm animal genetic resources and the adaptation of animals to climate change will probably have major effects on the long-term sustainability of the livestock sector. Genomic data harbour useful relevant information that needs to be harnessed for effectively managing genetic resources. In this paper, we report the genome characterization of the highly productive Mediterranean Chios dairy sheep and focus on genetic diversity measures related with local adaptation and selection and the genetic architecture of animal resilience to weather fluctuations as a novel adaptative trait linked to climate change.
View Article and Find Full Text PDFMany efforts are being made to cope with negative consequences of climate change (CC) on livestock. Among them, selective breeding of resilient animals to CC is presented as an opportunity to maintain high levels of performance regardless of variation in weather. In the present work, we proposed a set of breeding strategies to improve weather resilience in dairy goats raised in north-western European Atlantic conditions and dairy sheep raised in Mediterranean conditions while improving production efficiency at the same time.
View Article and Find Full Text PDFAs future climate challenges become increasingly evident, enhancing performance resilience of farm animals may contribute to mitigation against adverse weather and seasonal variation, and underpin livestock farming sustainability. In the present study, we develop novel seasonal resilience phenotypes reflecting milk production changes to fluctuating weather. We evaluate the impact of calendar season (autumn, winter and spring) on animal performance resilience by analysing 420,534 milk records of 36,908 milking ewes of the Chios breed together with relevant meteorological data from eastern Mediterranean.
View Article and Find Full Text PDFBackground: The alteration in weather patterns expected due to climate change will affect farm animal performance, probably resulting in lower quantity and quality of available products. A potential mitigation strategy would be to breed selected animals for enhanced resilience to climate change. In this context, resilience would reflect stable animal performance in spite of weather variation.
View Article and Find Full Text PDFBackground: Climate change is expected to have a negative impact on food availability. While most efforts have been directed to reducing greenhouse gas emissions, complementary strategies are necessary to control the detrimental effects of climate change on farm animal performance. The objective of this study was to develop novel animal resilience phenotypes using reaction norm slopes, and examine their genetic and genomic parameters.
View Article and Find Full Text PDF