Covalent bonds can be generated within and between proteins by an unnatural amino acid (Uaa) reacting with a natural residue through proximity-enabled bioreactivity. Until now, Uaas have been developed to react mainly with cysteine in proteins. Here we genetically encoded an electrophilic Uaa capable of reacting with histidine and lysine, thereby expanding the diversity of target proteins and the scope of the proximity-enabled protein cross-linking technology.
View Article and Find Full Text PDFThe ability to reversibly control protein structure and function with light would offer high spatiotemporal resolution for investigating biological processes. To confer photoresponsiveness on general proteins, we genetically incorporated a set of photoswitchable click amino acids (PSCaas), which contain both a reversible photoswitch and an additional click functional group for further modifications. Orthogonal tRNA-synthetases were evolved to genetically encode PSCaas bearing azobenzene with an alkene, keto, or benzyl chloride group in E.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2014
The selective generation of covalent bonds between and within proteins would provide new avenues for studying protein function and engineering proteins with new properties. New covalent bonds were genetically introduced into proteins by enabling an unnatural amino acid (Uaa) to selectively react with a proximal natural residue. This proximity-enabled bioreactivity was expanded to a series of haloalkane Uaas.
View Article and Find Full Text PDFUnnatural amino acids (UAAs) containing conjugated ring systems are of interest for their optical properties. Until now, such bulky and planar UAAs could not be incorporated into proteins using the pyrrolysyl tRNA/synthetase shuttling system. Using the "small-intelligent" approach to construct a highly diverse library, we evolved novel synthetases specific for two such UAAs and incorporated them into proteins in E.
View Article and Find Full Text PDF