The ribosomal small subunit locus has been used for transgene expression in the rodent malaria parasites, Plasmodium berghei and Plasmodium yoelii, but this strategy utilizes single crossover integration and is thus prone to reversion by plasmid excision. Targeting of the ribosomal subunit locus may also have a negative effect on oocyst development in the mosquito. In P.
View Article and Find Full Text PDFThe malaria parasite sporozoite transmission stage develops and differentiates within parasite oocysts on the Anopheles mosquito midgut. Successful inoculation of the parasite into a mammalian host is critically dependent on the sporozoite's ability to first infect the mosquito salivary glands. Remarkable changes in tissue infection competence are observed as the sporozoites transit from the midgut oocysts to the salivary glands.
View Article and Find Full Text PDFMalaria parasite sporozoites prepare for transmission to a mammalian host by upregulation of UIS (Upregulated in Infectious Sporozoites) genes. A number of UIS gene products are essential for the establishment of the intrahepatocytic niche. However, the factors that regulate the expression of genes involved in gain of infectivity for the liver are unknown.
View Article and Find Full Text PDFThe malaria parasite liver stage produces tens of thousands of red cell-infectious forms within its host hepatocyte. It is thought that the vacuole-enclosed parasite completely depends on the host cell for successful development but the molecular parasite-host cell interactions underlying this remarkable growth have remained elusive. Using a yeast two-hybrid screen and a yeast overexpression system we show that UIS3, a parasite protein essential for liver stage development, interacts directly with liver-fatty acid binding protein, L-FABP.
View Article and Find Full Text PDF