Int J Parasitol Drugs Drug Resist
August 2023
Toxoplasma gondii is a pervasive apicomplexan parasite that can cause severe disease and death in immunocompromised individuals and the developing foetus. The treatment of toxoplasmosis often leads to serious side effects and novel drugs and drug targets are therefore actively sought. In 2014, Mageed and colleagues suggested that the T.
View Article and Find Full Text PDFCoenzyme A is synthesised from pantothenate via five enzyme-mediated steps. The first step is catalysed by pantothenate kinase (PanK). All PanKs characterised to date form homodimers.
View Article and Find Full Text PDFMalaria-causing parasites are developing resistance to antimalarial drugs, providing the impetus for new antiplasmodials. Although pantothenamides show potent antiplasmodial activity, hydrolysis by pantetheinases/vanins present in blood rapidly inactivates them. We herein report the facile synthesis and biological activity of a small library of pantothenamide analogues in which the labile amide group is replaced with a heteroaromatic ring.
View Article and Find Full Text PDFPantothenamides are potent growth inhibitors of the malaria parasite Plasmodium falciparum. Their clinical use is, however, hindered due to the ubiquitous presence of pantetheinases in human serum, which rapidly degrade pantothenamides into pantothenate and the corresponding amine. We previously reported that replacement of the labile amide bond with a triazole ring not only imparts stability toward pantetheinases, but also improves activity against P.
View Article and Find Full Text PDFThe malaria-causing blood stage of Plasmodium falciparum requires extracellular pantothenate for proliferation. The parasite converts pantothenate into coenzyme A (CoA) via five enzymes, the first being a pantothenate kinase (PfPanK). Multiple antiplasmodial pantothenate analogues, including pantothenol and CJ-15,801, kill the parasite by targeting CoA biosynthesis/utilisation.
View Article and Find Full Text PDFAntimicrob Agents Chemother
December 2016
The biosynthesis of coenzyme A (CoA) from pantothenate and the utilization of CoA in essential biochemical pathways represent promising antimalarial drug targets. Pantothenamides, amide derivatives of pantothenate, have potential as antimalarials, but a serum enzyme called pantetheinase degrades pantothenamides, rendering them inactive in vivo In this study, we characterize a series of 19 compounds that mimic pantothenamides with a stable triazole group instead of the labile amide. Two of these pantothenamides are active against the intraerythrocytic stage parasite with 50% inhibitory concentrations (ICs) of ∼50 nM, and three others have submicromolar ICs.
View Article and Find Full Text PDFPantothenamides are known for their in vitro antimicrobial activity. Our group has previously reported a new stereoselective route to access derivatives modified at the geminal dimethyl moiety. This route however fails in the addition of large substituents.
View Article and Find Full Text PDF