Publications by authors named "Vanessa Geraldes"

Cyanobacterial Harmful Algal Blooms (CyanoHABs) pose a significant threat to communities globally, impacting ecosystems and public health. This study provides an in-depth review of the current state of cyanotoxins and the distribution of CyanoHABs species in Brazil, while also detailing the methods used for their detection. Four hundred and twenty-one incidents were analyzed from 1993 to 2021, compiling cyanotoxin records and toxic CyanoHABs occurrences.

View Article and Find Full Text PDF

Cyanobacteria can form harmful blooms in specific environmental conditions due to certain species producing toxic metabolites known as cyanotoxins. These toxins pose significant risks to public health and the environment, making it critical to identify and quantify them in food and water sources to avoid contamination. However, current screening methods only focus on a single class of cyanotoxins, limiting their effectiveness.

View Article and Find Full Text PDF

Freshwater cyanobacteria are known worldwide for their potential to produce toxins. However, these organisms are also found in marine, terrestrial and extreme environments and produce unique compounds, other than toxins. Nevertheless, their effects on biological systems are still barely known.

View Article and Find Full Text PDF

Anthropogenic activity has dramatically deteriorated aquatic ecosystems in recent years. Such environmental alterations could change the primary producers' composition, exacerbating the proliferation of harmful microorganisms such as cyanobacteria. Cyanobacteria can produce several secondary metabolites, including guanitoxin, a potent neurotoxin and the only naturally occurring anticholinesterase organophosphate ever reported in the literature.

View Article and Find Full Text PDF

Cyanobacteria are oxygenic phototrophic prokaryotes that have evolved to produce ultraviolet-screening mycosporine-like amino acids (MAAs) to lessen harmful effects from obligatory exposure to solar UV radiation. The cyanobacterial MAA biosynthetic cluster is formed by a gene encoding 2--5--valiolone synthase (EVS) located immediately upstream from an methyltransferase (OMT) encoding gene, which together biosynthesize the expected MAA precursor 4-deoxygadusol. Accordingly, these genes are typically absent in non-producers.

View Article and Find Full Text PDF

Mycosporines and mycosporine-like amino acids are ultra-violet-absorbing compounds produced by several organisms such as lichens, fungi, algae and cyanobacteria, especially upon exposure to solar ultraviolet radiation. These compounds have photoprotective and antioxidant functions. Mycosporine-like amino acids have been used as a natural bioactive ingredient in cosmetic products.

View Article and Find Full Text PDF

Interactions between climate change and ultraviolet radiation (UVR) have a substantial impact on aquatic ecosystems, especially on photosynthetic organisms. To counteract the damaging effects of UVR, cyanobacteria developed adaptive strategies such as the biosynthesis of secondary metabolites. This study aimed to evaluate the effects of UVR on the metabolomic profiles of potentially toxic cyanobacteria.

View Article and Find Full Text PDF

Rationale: Mycosporine-like amino acids (MAAs) are UV-absorbing compounds produced by fungi, algae, lichens, and cyanobacteria when exposed to UV radiation. These compounds have photoprotective and antioxidant functions and have been widely studied for possible use in sunscreens and anti-aging products. This study aims to identify MAA-producing cyanobacteria with potential application in cosmetics.

View Article and Find Full Text PDF