Background: Among the potential factors which may contribute to the development and perpetuation of atrial fibrillation, dysregulation of miRNAs has been suggested. Thus in this study, we have quantified the basal expressions of 662 mature human miRNAs in left atrium (LA) from patients undergoing cardiac surgery for valve repair, suffering or not from atrial fibrillation (AF) by using TaqMan® Low Density arrays (v2.0).
View Article and Find Full Text PDFThis study investigated miR-148b as a potential physiological actor of physical inactivity-induced effects in skeletal muscle. By using animal and human protocols, we demonstrated that the early phase of transition toward inactivity was associated with an increase in muscle miR-148b content, which triggered the downregulation of NRAS and ROCK1 target genes. Using human myotubes, we demonstrated that overexpression of miR-148b decreased NRAS and ROCK1 protein levels, and PKB phosphorylation and glucose uptake in response to insulin.
View Article and Find Full Text PDFBackground: Lipoprotein lipase (LPL) is a key enzyme in triglyceride (TG) metabolism. LPL gene single nucleotide polymorphisms (SNPs) are associated with TG concentrations however the functionality of many of these SNPs remains poorly understood. MicroRNAs (miR) exert post-transcriptional down-regulation and their target sequence on the 3'UTR may be altered by SNPs.
View Article and Find Full Text PDFTumorigenesis is associated with increased glucose consumption and lipogenesis, but how these pathways are interlinked is unclear. Here, we delineate a pathway in which EGFR signaling, by increasing glucose uptake, promotes N-glycosylation of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and consequent activation of SREBP-1, an ER-bound transcription factor with central roles in lipid metabolism. Glycosylation stabilizes SCAP and reduces its association with Insig-1, allowing movement of SCAP/SREBP to the Golgi and consequent proteolytic activation of SREBP.
View Article and Find Full Text PDFAPOA5 c.*158C>T (rs2266788), located in the 3' UTR, belongs to APOA5 haplotype 2 (APOA5*2), which is strongly associated with plasma triglyceride levels and modulates the occurrence of both moderate and severe hypertriglyceridemia. Individuals with APOA5*2 display reduced APOA5 expression at the posttranscriptional level.
View Article and Find Full Text PDFIt has recently been established that exosomes can mediate intercellular cross-talk under normal and pathological conditions through the transfer of specific miRNAs. As muscle cells secrete exosomes, we addressed the question of whether skeletal muscle (SkM) exosomes contained specific miRNAs, and whether they could act as "endocrine signals" during myogenesis. We compared the miRNA repertoires found in exosomes released from C2C12 myoblasts and myotubes and found that 171 and 182 miRNAs were exported into exosomes from myoblasts and myotubes, respectively.
View Article and Find Full Text PDFmTOR is a major actor of skeletal muscle mass regulation in situations of atrophy or hypertrophy. It is established that Phospholipase D (PLD) activates mTOR signaling, through the binding of its product phosphatidic acid (PA) to mTOR protein. An influence of PLD on muscle cell size could thus be suspected.
View Article and Find Full Text PDFObjective: Endosomal signature phospholipid bis(monoacylglycero)phosphate (BMP) has been involved in the regulation of cellular cholesterol homeostasis. Accumulation of BMP is a hallmark of lipid storage disorders and was recently reported as a noticeable feature of oxidized low-density lipoprotein-laden macrophages. This study was designed to delineate the consequences of macrophage BMP accumulation on intracellular cholesterol distribution, metabolism, and efflux and to unravel the underlying molecular mechanisms.
View Article and Find Full Text PDFSREBP-1 are ubiquitously expressed transcription factors, strongly expressed in lipogenic tissues where they regulate several metabolic processes like fatty acid synthesis. In skeletal muscle, SREBP-1 proteins regulate the expression of hundreds of genes, and we previously showed that their overexpression induced muscle atrophy together with a combined lack of expression of myogenic regulatory factors. Here we present evidences that SREBP-1 regulate muscle protein synthesis through the downregulation of the expression of MYOD1, MYOG and MEF2C factors.
View Article and Find Full Text PDFSirtuin 1 (SIRT1), a NAD(+)-dependent protein deacetylase, has emerged as a main determinant of whole body homeostasis in mammals by regulating a large spectrum of transcriptional regulators in metabolically relevant tissue such as liver, adipose tissue and skeletal muscle. Sterol regulatory element binding protein (SREBP)-1c is a transcription factor that controls the expression of genes related to fatty acid and triglyceride synthesis in tissues with high lipid synthesis rates such as adipose tissue and liver. Previous studies indicate that SIRT1 can regulate the expression and function of SREBP-1c in liver.
View Article and Find Full Text PDFThe role of the transcription factors sterol regulatory element binding protein 1a (SREBP-1a) and SREBP-1c in the regulation of cholesterol and fatty acid metabolism has been well studied; however, little is known about their specific function in muscle. In the present study, analysis of recent microarray data from muscle cells overexpressing SREBP1 suggested that they may play a role in the regulation of myogenesis. We then demonstrated that SREBP-1a and -1c inhibit myoblast-to-myotube differentiation and also induce in vivo and in vitro muscle atrophy.
View Article and Find Full Text PDFIn this study we have identified the target genes of sterol regulatory element binding protein (SREBP)-1a and SREBP-1c in primary cultures of human skeletal muscle cells, using adenoviral vectors expressing the mature nuclear form of human SREBP-1a or SREBP-1c combined with oligonucleotide microarrays. Overexpression of SREBP-1a led to significant changes in the expression of 1,315 genes (655 upregulated and 660 downregulated), whereas overexpression of SREBP-1c modified the mRNA level of 514 genes (310 upregulated and 204 downregulated). Gene ontology analysis indicated that in human muscle cells SREBP-1a and -1c are involved in the regulation of a large number of genes that are at the crossroads of different functional pathways, several of which are not directly connected with cholesterol and lipid metabolism.
View Article and Find Full Text PDFIn the present study, we aimed to decipher the mechanisms involved in the transcriptional effect of insulin on the SREBP-1c specific promoter of the human srebf-1 gene. Using luciferase reporter gene constructs in HEK-293 cells (human embryonic kidney cells), we demonstrated that the full effect of insulin requires the presence of SREs (sterol response elements) in the proximal region of the promoter. Furthermore, insulin increases the binding of SREBP-1 (sterol-regulatory-element-binding protein-1) to this promoter region in chromatin immunoprecipitation assay.
View Article and Find Full Text PDF