Publications by authors named "Vanessa Dorneles Torbitz"

Fenton reaction is a new mechanism able to generate advanced oxidation protein products (AOPPs) by exposing the human serum albumin to the Fenton system. Here, we characterized the effects of Fenton reaction-generated advanced oxidation protein products (AOPP-FR) on the gene transcription of the nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and interleukin-6 (IL-6) in human embryonic kidney cells (HEK 293). To investigate the effects of AOPP-FR and AOPP-HOCl on transcription of inflammatory genes, the NF-κB, COX-2, and IL-6 luciferase promoter activities were analyzed.

View Article and Find Full Text PDF

The accumulation of advanced oxidation protein products (AOPPs) has been linked to several pathological conditions. Here, we investigated collagen as a potential source for AOPP formation and determined the effects of hypochlorous acid (HOCl)-treated collagen (collagen-AOPPs) on human neutrophil activity. We also assessed whether alpha-tocopherol could counteract these effects.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is characterized by oxidative stress, and most of the adverse effects of CKD are mediated by iron-catalyzed ROS generation. The DNA, in particular, is more susceptible to attack by ROS than other proteins and membrane lipids. Considering the evidence on the relationship between CKD, iron metabolism, and DNA damage, the purpose of this study was to evaluate cell-free DNA in the plasma of HD patients and its association with iron status biomarkers and kidney function.

View Article and Find Full Text PDF

The aim of the present study was to assess the effects of zinc edetate on the oxidative stress of lambs infected by Haemonchus contortus. Twenty-four lambs were allocated into four groups: Group I--uninfected animals; Group II--uninfected animals treated subcutaneously with zinc edetate; Group III--animals infected by H. contortus and Group IV--animals infected and treated.

View Article and Find Full Text PDF

Context: Several biological effects of Paullinia cupana (guarana) have been demonstrated, but little information is available on its effects on the liver.

Objective: The current study was designed to evaluate the hepatoprotective and genoprotective effects of powder seeds from guarana on CCl4-induced liver injury in rats.

Materials And Methods: Male Wistar rats were pretreated with guarana powder (100, 300 and 600 mg/kg) or silymarin 100 mg/kg daily for 14 days before treatment with a single dose of CCl4 (50% CCl4, 1 mL/kg, intraperitoneally).

View Article and Find Full Text PDF

Fibrinogen (FB) is a soluble blood plasma protein and is a key molecule involved in coagulation. Oxidative modification of proteins, such as the formation of advanced oxidation protein products (AOPP), a heterogeneous family of protein compounds structurally modified and derived from oxidative stress, may be associated with the pathophysiology of a number of chronic inflammatory diseases. Therefore, the aim of this study was to determine whether the formation of this mediator of inflammation occurs from FB and whether its generation is associated with structural changes.

View Article and Find Full Text PDF

The accumulation of advanced oxidation protein products (AOPPs) has been linked to several pathological conditions, and their levels are formed during oxidative stress as a result of reactions between plasma proteins and chlorinated oxidants produced by myeloperoxidase (MPO). However, it was suggested that the generation of this mediator of inflammation may also occur via an MPO-independent pathway. The aim of this study was to induce the formation of AOPPs in vitro through Fenton reaction and to investigate whether this generation could be counteracted by N-acetylcysteine (NAC) and fructose-1,6-bisphosphate (FBP).

View Article and Find Full Text PDF

The accumulation of advanced oxidation protein products (AOPP) has been linked to several pathological conditions. Previous studies have identified AOPP as a novel biomarker of oxidative damage to proteins and a novel class of mediator of inflammation. The aim of this study was to determine the effects of fructose-1,6-bisphosphate (FBP) and N-acetylcysteine (NAC) as well as the synergistic effect of both treatments on the formation of AOPP in vitro.

View Article and Find Full Text PDF