Publications by authors named "Vanessa Clerico Mosina"

TMEM16F, a member of the conserved TMEM16 family, plays a central role in the initiation of blood coagulation and the fusion of trophoblasts. The protein mediates passive ion and lipid transport in response to an increase in intracellular Ca. However, the mechanism of how the protein facilitates both processes has remained elusive.

View Article and Find Full Text PDF

The TMEM16 family of membrane proteins displays a remarkable functional dichotomy - while some family members function as Ca-activated anion channels, the majority of characterized TMEM16 homologs are Ca-activated lipid scramblases, which catalyze the exchange of phospholipids between the two membrane leaflets. Furthermore, some TMEM16 scramblases can also function as channels. Due to their involvement in important physiological processes, the family has been actively studied ever since their molecular identity was unraveled.

View Article and Find Full Text PDF

Single-particle cryo-electron microscopy has become an indispensable technique in structural biology. In particular when studying membrane proteins, it allows the use of membrane-mimicking tools, which can be crucial for a comprehensive understanding of the structure-function relationship of the protein in its native environment. In this chapter we focus on the application of nanodiscs and use our recent studies on the TMEM16 family as an example.

View Article and Find Full Text PDF

The lipid scramblase TMEM16F initiates blood coagulation by catalyzing the exposure of phosphatidylserine in platelets. The protein is part of a family of membrane proteins, which encompasses calcium-activated channels for ions and lipids. Here, we reveal features of murine TMEM16F (mTMEM16F) that underlie its function as a lipid scramblase and an ion channel.

View Article and Find Full Text PDF

Scramblases catalyze the movement of lipids between both leaflets of a bilayer. Whereas the X-ray structure of the protein nhTMEM16 has previously revealed the architecture of a Ca-dependent lipid scramblase, its regulation mechanism has remained elusive. Here, we have used cryo-electron microscopy and functional assays to address this question.

View Article and Find Full Text PDF