Musca flies (Diptera: Muscidae) have been found culpable in the mechanical transmission of several infectious agents, including viruses, bacteria, protozoans, and helminths, particularly in low-income settings in tropical regions. In large numbers, these flies can negatively impact the health of communities and their livestock through the transmission of pathogens. In some parts of the world, Musca sorbens is of particular importance because it has been linked with the transmission of trachoma, a leading cause of preventable and irreversible blindness or visual impairment caused by Chlamydia trachomatis, but the contribution these flies make to trachoma transmission has not been quantified and even less is known for other pathogens.
View Article and Find Full Text PDFBackground: A rapid, accurate, non-invasive diagnostic screen is needed to identify people with SARS-CoV-2 infection. We investigated whether organic semi-conducting (OSC) sensors and trained dogs could distinguish between people infected with asymptomatic or mild symptoms, and uninfected individuals, and the impact of screening at ports-of-entry.
Methods: Odour samples were collected from adults, and SARS-CoV-2 infection status confirmed using RT-PCR.
The putative vector of trachoma, Musca sorbens, prefers to lay its eggs on human faeces on the ground. This study sought to determine whether M. sorbens females were attracted to volatile odours from human faeces in preference to odours from the faeces of other animals, and to determine whether specific volatile semiochemicals mediate selection of the faeces.
View Article and Find Full Text PDFBackground: Recommended vector control tools against malaria, such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), mainly target mosquitoes that rest and feed on human hosts indoors. However, in some malaria-endemic areas, such as Southeast Asia and South America, malaria vectors primarily bite outdoors meaning that LLINs and IRS may be less effective. In these situations the use of topical insect repellents may reduce outdoor biting and morbidity from malaria.
View Article and Find Full Text PDFN,N-diethyl-m-toluamide (DEET) has been registered for commercial use as an insect repellent for over five decades, and is used widely across the world. Concerns over the safety of DEET first emerged during the 1980s after reports of encephalopathy following DEET exposure, particularly in children. However, the role of DEET in either the illness or deaths was and remains purely speculative.
View Article and Find Full Text PDFBackground: Long-lasting insecticide treated blankets (LLIBs) may provide additional protection against malaria where use of long lasting insecticidal nets (LLIN) is low or impractical such as in disaster or emergency situations.
Methods: Initial efficacy testing of a new candidate LLIB was carried out at LSHTM and KCMUCo, before and after washing, in cone and ball bioassays and arm-in-cage tests against pyrethroid susceptible Anopheles gambiae. A small scale field trial was conducted using veranda-trap experimental huts in northern Tanzania against wild An.
Background: Mosquito vectors of malaria in Southeast Asia readily feed outdoors making malaria control through indoor insecticides such as long-lasting insecticidal nets (LLINs) and indoor residual spraying more difficult. Topical insect repellents may be able to protect users from outdoor biting, thereby providing additional protection above the current best practice of LLINs.
Methods And Findings: A double blind, household randomised, placebo-controlled trial of insect repellent to reduce malaria was carried out in southern Lao PDR to determine whether the use of repellent and long-lasting insecticidal nets (LLINs) could reduce malaria more than LLINs alone.