Locomotion allows us to move and interact with our surroundings. Spinal networks that control locomotion produce rhythm and left-right and flexor-extensor coordination. Several glutamatergic populations, Shox2 non-V2a, Hb9-derived interneurons, and, recently, spinocerebellar neurons have been proposed to be involved in the mouse rhythm generating networks.
View Article and Find Full Text PDFFrom a design of experiments (DOE) performed under four independent variables, with the filmogenicity conditions and shortest disintegration time as the answers, a new oral disintegrating film (ODF) based on hydroxypropyl methylcellulose (HPMC) and guar gum (GG) with the essential oil of Plectranthus amboinicus L. (EOPA) was developed. Sixteen formulations were tested for filmogenicity, homogeneity, and viability.
View Article and Find Full Text PDFSpasms after spinal cord injury (SCI) are debilitating involuntary muscle contractions that have been associated with increased motor neuron excitability and decreased inhibition. However, whether spasms involve activation of premotor spinal excitatory neuronal circuits is unknown. Here we use mouse genetics, electrophysiology, imaging and optogenetics to directly target major classes of spinal interneurons as well as motor neurons during spasms in a mouse model of chronic SCI.
View Article and Find Full Text PDFRhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation.
View Article and Find Full Text PDFThe episodic nature of locomotion is thought to be controlled by descending inputs from the brainstem. Most studies have largely attributed this control to initiating excitatory signals, but little is known about putative commands that may specifically determine locomotor offset. To link identifiable brainstem populations to a potential locomotor stop signal, we used developmental genetics and considered a discrete neuronal population in the reticular formation: the V2a neurons.
View Article and Find Full Text PDFEphA4 signaling is essential for the spatiotemporal organization of neuronal circuit formation. In mice, deletion of this signaling pathway causes aberrant midline crossing of axons from both brain and spinal neurons and the complete knock-outs (KOs) exhibit a pronounced change in motor behavior, where alternating gaits are replaced by a rabbit-like hopping gait. The neuronal mechanism that is responsible for the gait switch in these KO mice is not known.
View Article and Find Full Text PDFObjective: The aim of the study was to evaluate criteria used in clinical practice, for screening of patients for ICU admission.
Methods: Cohort prospective study in a tertiary hospital. Four groups were compared in relation to ICU admission by ranking priorities into groups 1, 2, 3 and 4; highest priority 1, lowest priority 4.