Piezoelectric fluoropolymers convert mechanical energy to electricity and are ideal for sustainably providing power to electronic devices. To convert mechanical energy, a net polarization must be induced in the fluoropolymer, which is currently achieved via an energy-intensive electrical poling process. Eliminating this process will enable the low-energy production of efficient energy harvesters.
View Article and Find Full Text PDFNovel profluorescent mono- and bis-isoindoline nitroxides linked to napthalimide and perylene diimide structural cores are described. These nitroxide-fluorophore probes display strongly suppressed fluorescence in comparison to their corresponding non-radical diamagnetic methoxyamine derivatives. The perylene-based probe possessing two isoindoline systems tethered through ethynyl linkages was shown to be the most photostable in solution, demonstrating significantly enhanced longevity over the 9,10-bis(phenylethynyl)anthracene fluorophore used in previous profluorescent nitroxide probes.
View Article and Find Full Text PDF