Obesity is associated with increased breast cancer risk and poorer cancer outcomes; however, the precise etiology of these observations has not been fully identified. Our previous research suggests that adipose tissue-derived fibroblast growth factor-2 (FGF2) promotes the malignant transformation of epithelial cells through the activation of fibroblast growth factor receptor-1 (FGFR1). FGF2 is increased in the context of obesity, and increased sera levels have been associated with endocrine-resistant breast cancer.
View Article and Find Full Text PDFObesity is associated with ~40% of cancer diagnoses but there are currently no effective preventive strategies, illustrating a need for chemoprevention. We previously demonstrated that fibroblast growth factor 2 (FGF2) from adipose tissue stimulates malignant transformation, as measured by growth in soft agar, the gold-standard in vitro transformation assay. Because the soft agar assay is unsuitable for high throughput screens (HTS), we developed a novel method using 3D growth in ultra-low attachment conditions as an alternative to growth in agar to discover compounds that inhibit transformation.
View Article and Find Full Text PDFObesity is a leading risk factor for post-menopausal breast cancer, and this is concerning as 40% of cancer diagnoses in 2014 were associated with overweight/obesity. Despite this epidemiological link, the underlying mechanism responsible is unknown. We recently published that visceral adipose tissue (VAT) releases FGF2 and stimulates the transformation of skin epithelial cells.
View Article and Find Full Text PDFCancer Prev Res (Phila)
March 2018
Almost half a million of all new cancers have been attributed to obesity and epidemiologic evidence implicates visceral adipose tissue (VAT) and high-fat diets (HFD) in increasing cancer risk. We demonstrated that VAT-derived fibroblast growth factor 2 (FGF2) from mice fed an HFD or obese individuals stimulates the malignant transformation of epithelial cells. Mechanism-based strategies to prevent this VAT-enhanced tumorigenesis have not been explored.
View Article and Find Full Text PDFAlthough there is a growing number of incidences of obesity and obesity-linked cancers, how excess adiposity actually causes cancer has not been fully explained. Our previous study showed that removal of visceral adipose tissue significantly reduced the number of ultraviolet radiation (UVR)-initiated, high-fat diet-promoted skin cancers. This commentary focuses on our recently published study (Chakraborty, et al.
View Article and Find Full Text PDF