The aqueous redox flow battery is a promising technology for large-scale low cost energy storage. The rich possibilities for the tailoring of organic molecules and the possibility to discover active materials of lower cost and decreased environmental impact continue to drive research and development of organic compounds suitable for redox flow battery applications. In this work, we focus on the characterization of aromatic molecules with 1,4-diaza groups for flow battery applications.
View Article and Find Full Text PDFThe human antigen R (HuR) is an RNA-binding protein known to modulate the expression of target mRNA coding for proteins involved in inflammation, tumorigenesis, and stress responses and is a valuable drug target. We previously found that dihydrotanshinone-I (DHTS, 1) prevents the association of HuR with its RNA substrate, thus imparing its function. Herein, inspired by DHTS structure, we designed and synthesized an array of ortho-quinones (tanshinone mimics) using a function-oriented synthetic approach.
View Article and Find Full Text PDFElectrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient).
View Article and Find Full Text PDF