Publications by authors named "Vanesa Munoz-Perales"

The continued advancement of electrochemical technologies requires an increasingly detailed understanding of the microscopic processes that control their performance, inspiring the development of new multi-modal diagnostic techniques. Here, we introduce a neutron imaging approach to enable the quantification of spatial and temporal variations in species concentrations within an operating redox flow cell. Specifically, we leverage the high attenuation of redox-active organic materials (high hydrogen content) and supporting electrolytes (boron-containing) in solution and perform subtractive neutron imaging of active species and supporting electrolyte.

View Article and Find Full Text PDF

Electrochemical flow reactors are increasingly relevant platforms in emerging sustainable energy conversion and storage technologies. As a prominent example, redox flow batteries, a well-suited technology for large energy storage if the costs can be significantly reduced, leverage electrochemical reactors as power converting units. Within the reactor, the flow field geometry determines the electrolyte pumping power required, mass transport rates, and overall cell performance.

View Article and Find Full Text PDF